

СИСТЕМА УПРАВЛЕНИЯ ЭНТРОМАТИК 110М

Руководство по монтажу и эксплуатации

Содержание

1 ОБЛАСТЬ ПРИМЕНЕНИЯ 02 2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СУ ЭНТРОМАТИК 110М 03 3 ВАРИАНТЫ КОНФИГУРАЦИИ ТЕПЛОВЫХ СХЕМ 05 4 УСТАНОВКА ЩИТА 06 5 ЭЛЕКТРОПИТАНИЕ 05 6 ОРГАНЫ УПРАВЛЕНИЯ СУ ЭНТРОМАТИК 110М 05 7 ПОДКЛЮЧЕНИЕ К ЦИФРОВОЙ ШИНЕ САИВUS 10 8 ВВОД В ЭКСПЛУАТАЦИЮ 10 8.1 Экран текущих значений 11 8.2 Режим ручного управления котлом 12 8.3 Режим автоматического управления котлом 12 8.3 Режим автоматического управления котлом 12 9.1 Структура экранного мено 13 9.2.1 Родиме данные 16 9.2.2 Параметры котла 26 9.2.4 Диапазон датчиков 33 9.2.5 Монторинг 33 9.2.6 Мунрал варийных событий 33 9.2.7 Параметры ГРС 36 9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 36	ПРЕДИСЛОВИЕ	02
2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СУ ЭНТРОМАТИК 110М 03 3 ВАРИАНТЫ КОНФИГУРАЦИИ ТЕПЛОВЫХ СХЕМ 06 4 УСТАНОВКА ЩИТА 06 5 ЭЛЕКТРОПИТАНИЕ 06 6 ОРГАНЫ УПРАВЛЕНИЯ СУ ЭНТРОМАТИК 110М 06 7 ПОДКЛЮЧЕНИЕ К ЦИФРОВОЙ ШИНЕ САNBUS 10 8 ВВОД В ЭКСПЛУАТАЦИЮ 11 8.1 Экран текущих значений 11 8.2 Режим ручного управления котлом 12 8.3 Режим ватоматического управления котлом 12 8.4 Экран текущих значений 11 9.2 Разделы меню 12 9.3 Реким ватоматического управления котлом 12 9.2 Гараметры котла 26 9.2.1 Общие данные 16 9.2.2 Параметры котла 26 9.2.3 Реким ТЕСТ/РЕЛЕ 26 9.2.4 Диапазон датчиков 31 9.2.5 Мониторинг 33 9.2.6 Курнал аварийных событий 33 9.2.7 Параметры ГСС 36 9.2.8 Параметры стратегии 42 9.2.10 Параметры стратегии 45 9.2.11 СРТК (система регулирорования темп. в котельной) 46	1 ОБЛАСТЬ ПРИМЕНЕНИЯ	02
3 ВАРИАНТЫ КОНФИГУРАЦИИ ТЕПЛОВЫХ СХЕМ 05 4 УСТАНОВКА ЩИТА 06 5 ЭЛЕКТРОПИТАНИЕ 06 6 ОРГАНЫ УПРАВЛЕНИЯ СУ ЭНТРОМАТИК 110М 06 7 ПОДКЛЮЧЕНИЕ К ЦИФРОВОЙ ШИНЕ САNBUS 10 8 ВВОД В ЭКСПЛУАТАЦИЮ 10 8 ВРАНИЕ ТКИФРОВОЙ ШИНЕ САNBUS 11 8.1 Экран текущих значений 11 8.2 Режим ручного управления котлом 12 9 ЗАДАНИЕ ПАРАМЕТРОВ И КОНФИГУРИРОВАНИЕ СУ ЭНТРОМАТИК 110М 13 9.1 Структура экранного меню 16 9.2.1 Общие данные 16 9.2.2 Параметры котла 22 9.2.3 Режим ТЕСПРЕЛЕ 22 9.2.4 Диапазон датчиков 31 9.2.5 Мониторинг 33 9.2.6 Журнал аварийных контуров 34 9.2.10 Параметры столительных контуров 34 9.2.10 Параметры стратегии 35 9.2.10 СРТК (система регулирования темп. в котельной) 34 9.2.10 ГРАВАНИИ САНУИРЕНИЕ ДИСПЕТЧЕРСКИХ БЛОКОВ DEDI И DBAI 52 10.1 Монтах модулей 55 10.2 Стеквой адаптер ЕХІ-RC1 54 10.3 Модуль расшир	2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СУ ЭНТРОМАТИК 110М	03
4 УСТАНОВКА ЩИТА 06 5 ЭЛЕКТРОПИТАНИЕ 06 6 ОРГАНЫ УПРАВЛЕНИЯ СУ ЭНТРОМАТИК 110М 05 7 ПОДКЛЮЧЕНИЕ К ЦИФРОВОЙ ШИНЕ САВИБУ	3 ВАРИАНТЫ КОНФИГУРАЦИИ ТЕПЛОВЫХ СХЕМ	05
5 ЭЛЕКТРОПИТАНИЕ 05 6 ОРГАНЫ УПРАВЛЕНИЯ СУ ЭНТРОМАТИК 110М 05 7 ПОДКЛЮЧЕНИЕ К ЦИФРОВОЙ ШИНЕ САМВИЗ 10 8 ВВОД В ЭКСПЛУАТАЦИЮ 10 8.1 Экран текущих значений 11 8.2 Режим ручного управления котлом 12 8.3 Режим ручного управления котлом 12 9 ЗАДАНИЕ ПАРАМЕТРОВ И КОНФИГУРИРОВАНИЕ СУ ЭНТРОМАТИК 110М 13 9.1 Структура экранного меню 15 9.2.2 Разделы меню 16 9.2.1 Общие данные 16 9.2.2 Параметры котла 26 9.2.3 Режим ТЕСТ/РЕЛЕ 26 9.2.4 Диапазон датчиков 31 9.2.5 Монторинг 32 9.2.6 Журнал аварийных событий 33 9.2.7 Параметры отопительных контуров 34 9.2.8 Параметры отопительных контуров 34 9.2.9 ГИД-регулятор СУ ЭНТРОМАТИК 110М 44 9.2.10 Параметры стратегии 45 9.2.11 СРТК (система регулирования темп. в котельной)	4 УСТАНОВКА ЩИТА	08
6 ОРГАНЫ УПРАВЛЕНИЯ СУ ЭНТРОМАТИК 110М 05 7 ПОДКЛЮЧЕНИЕ К ЦИФРОВОЙ ШИНЕ САМВИS 10 8 ВВОД В ЭКСПЛУАТАЦИЮ 11 8.1 Экран текущих значений 11 8.2 Режим ручного управления котлом 12 8.3 Режим ватоматического управления котлом 12 9 ЗАДАНИЕ ПАРАМЕТРОВ И КОНФИГУРИРОВАНИЕ СУ ЭНТРОМАТИК 110М 13 9.1 Структура экранного меню 13 9.2 Разделы меню 16 9.2.1 Общие данные 16 9.2.2 Параметры котла 26 9.2.3 Режим ТЕСТ/РЕЛЕ 26 9.2.4 Диалазон датчиков 33 9.2.5 Мониторинг 32 9.2.6 Журнал аварийных событий 33 9.2.7 Параметры отопительных контуров 34 9.2.8 Параметры ГВС 36 9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 41 9.2.10 Гараметры стратегии 44 9.2.11 СРТК (система регулирования темп. в котельной) 42 9.2.12 Управление экономайзером котла 51 9.2.21 Общирения IO-АТС8 56 10.4 Модуле расширения IO-АТС8 56 10.5 Мониторинг входных параметров диспетчерских блоков 56	5 ЭЛЕКТРОПИТАНИЕ	09
7 ПОДКЛЮЧЕНИЕ К ЦИФРОВОЙ ШИНЕ CANBUS 10 8 ВВОД В ЭКСПЛУАТАЦИЮ 10 8.1 Экран текущих значений 11 8.2 Режим ручного управления котлом 12 8.3 Режим автоматического управления котлом 12 9 ЗАДАНИЕ ПАРАМЕТРОВ И КОНФИГУРИРОВАНИЕ СУ ЭНТРОМАТИК 110M 13 9.1 Структура экранного меню 16 9.2 Разделы меню 16 9.2.1 Общие данные 16 9.2.2 Параметры котла 26 9.2.3 Режим ТЕСТ/РЕЛЕ 22 9.2.4 Диапазон датчиков 31 9.2.5 Мониторинг 32 9.2.6 Журнал аварийных событий 32 9.2.7 Параметры отопительных контуров 34 9.2.8 Параметры отопительных контуров 36 9.2.9 ГИД-регулятор СУ ЭНТРОМАТИК 110M 41 9.2.10 Параметры стратегии 45 9.2.11 СРТК (система регулирования темп. в котельной) 46 9.2.12 Управление экономайзером котла 51 10.2 Сетевой адаптер ЕХІ-RC1 52 10.3 Модуль расширения IO-ATC8 56 10.4 Монторинг входных параметров диспетчерских блоков DBDI и DBAI 52 10.2 Сетевой адаптер ЕХІ-RC1 52	6 ОРГАНЫ УПРАВЛЕНИЯ СУ ЭНТРОМАТИК 110М	09
8 ВВОД В ЭКСПЛУАТАЦИЮ 10 8.1 Экран текущих значений 11 8.2 Режим ручного управления котлом 12 8.3 Режим автоматического управления котлом 12 9 ЗАДАНИЕ ПАРАМЕТРОВ И КОНФИГУРИРОВАНИЕ СУ ЭНТРОМАТИК 110М 13 9.1 Структура экранного меню 12 9.2.1 Общие данные 16 9.2.2 Параметры котла 26 9.2.3 Режим ТЕСТ/РЕЛЕ 26 9.2.4 Диапазон датчиков 31 9.2.5 Мониторинг 32 9.2.6 Журнал аварийных событий 33 9.2.7 Параметры отопительных контуров 34 9.2.8 Параметры грастры ГВС 36 9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 41 9.2.10 Параметры стратегии 42 9.2.11 СРТК (система регулирования темп. в котельной) 44 9.2.12 Управление экономайзером котла 51 9.3 Экраны оперативного ввода 52 10.1 Монтаж модулей 52 10.2 Сетевой адаптер ЕХІ-RC1 56 10.3 Модуль расширения Ю-ЛСВ 52 10.4 Модуль расширения Ю-ЛСТСВ 56 10.5 Мониторинг входных параметров диспетчерских блоков 56	7 ПОДКЛЮЧЕНИЕ К ЦИФРОВОЙ ШИНЕ CANBUS	10
8.1 Экран текущих значений 11 8.2 Режим ручного управления котлом 12 8.3 Режим автоматического управления котлом 12 9 ЗАДАНИЕ ПАРАМЕТРОВ И КОНФИГУРИРОВАНИЕ СУ ЭНТРОМАТИК 110М 13 9.1 Структура экранного меню 13 9.2 Разделы меню 16 9.2.1 Общие данные 16 9.2.2 Параметры котла 26 9.2.3 Режим ТЕСТ/РЕЛЕ 26 9.2.4 Диапазон датчиков 31 9.2.5 Мониторинг 32 9.2.6 Журнал аварийных событий 32 9.2.7 Параметры готопительных контуров 34 9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 41 9.2.10 Параметры стратегии 42 9.2.11 СРТК (система регулирования темп. в котельной) 44 9.2.12 Управление экономайзером котла 51 9.3 Экраны оперативного ввода 52 10.1 Монтаж модулей 53 10.2 Сетевой адаптер EX1-RC1 54 10.3 Модуль расширения Ю-D116 55 10.4 Модуль расширения Ю-D116 52 10.5 Мониторинг входных параметров киспта 55 10.4 Модуль расширения ПО-D16 55 10.5 Монито	8 ВВОД В ЭКСПЛУАТАЦИЮ	10
8.2 Режим ручного управления котлом 12 8.3 Режим автоматического управления котлом 12 9 ЗАДАНИЕ ПАРАМЕТРОВ И КОНФИГУРИРОВАНИЕ СУ ЭНТРОМАТИК 110М 13 9.1 Структура экранного меню 15 9.2 Разделы меню 16 9.2.1 Общие данные 16 9.2.2 Параметры котла 26 9.2.3 Режим ТЕСТ/РЕЛЕ 26 9.2.4 Диапазон датчиков 31 9.2.5 Мониторинг 32 9.2.6 Журнал аварийных событий 33 9.2.7 Параметры готолительных контуров 34 9.2.8 Параметры ГВС 36 9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 41 9.2.10 Параметры стратегии 42 9.2.11 СРТК (система регулирования темп. в котельной) 42 9.2.12 Управление экономайзером котла 51 9.3 Экраны оперативного ввода 52 10.1 Монтаж модулей 52 10.2 Сетевой адаптер ЕХ1-RC1 54 10.3 Модуль расширения ІО-DI16 55 10.5 Мониторинг входных параметров конфигурации СУ ЭНТРОМАТИК 110М 52 11.1 Монтаж модулей 53 10.2 Сетевой адаптер ЕХ1-RC1 54 10.	8.1 Экран текущих значений	11
8.3 Режим автоматического управления котлом 12 9 ЗАДАНИЕ ПАРАМЕТРОВ И КОНФИГУРИРОВАНИЕ СУ ЭНТРОМАТИК 110М 13 9.1 Структура экранного меню 13 9.2 Разделы меню 16 9.2.1 Общие данные 16 9.2.2 Параметры котла 26 9.2.3 Режим ТЕСТ/РЕЛЕ 26 9.2.4 Диапазон датчиков 31 9.2.5 Мониторинг 32 9.2.6 Журнал аварийных событий 33 9.2.7 Параметры отопительных контуров 34 9.2.8 Параметры ГВС 36 9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 41 9.2.10 Параметры стратегии 42 9.2.11 СРТК (система регулирования темп. в котельной) 42 9.2.12 Управление экономайзером котла 51 9.3 Экраны оперативного ввода 52 10.1 Монтаж модулей 53 10.2 Сетевой адаптер ЕХ1-RC1 54 10.3 Модуль расширения IO-ATC8 56 10.4 Модуль расширения IO-D116 55 10.5 Мониторинк уставки котла 55 12.1 Формирования уставки котла 56 12.2 Таблица вводимых параметров диспетчерских блоков 56 11 НЕИСПР	8.2 Режим ручного управления котлом	12
9 ЗАДАНИЕ ПАРАМЕТРОВ И КОНФИГУРИРОВАНИЕ СУ ЭНТРОМАТИК 110М 13 9.1 Структура экранного меню 13 9.2 Разделы меню 16 9.2.1 Общие данные 16 9.2.2 Параметры котла 26 9.2.3 Режим ТЕСТ/РЕЛЕ 25 9.2.4 Диапазон датчиков 31 9.2.5 Мониторинг 32 9.2.6 Журнал аварийных событий 33 9.2.7 Параметры отопительных контуров 34 9.2.8 Параметры ГВС 36 9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 41 9.2.10 Параметры ГВС 36 9.2.11 СРТК (система регулирования темп. в котельной) 46 9.2.12 Управление экономайзером котла 51 9.3 Экрань оперативного ввода 52 10.1 Монтаж модулей 52 10.2 Сетевой адаптер ЕХІ-RС1 54 10.3 Модуль расширения Ю-АТС8 56 10.4 Модуль расширения Ю-ВІП6 52 11.5 Мониторинг входных параметров дислетчерских блоков 60 11.1 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 52 12.1 Формирования уставки котла 52 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 56	8.3 Режим автоматического управления котлом	12
9.1 Структура экранного меню 13 9.2 Разделы меню 16 9.2.1 Общие данные 16 9.2.2 Параметры котла 26 9.2.3 Режим ТЕСТ/РЕЛЕ 25 9.2.4 Диапазон датчиков 31 9.2.5 Мониторинг 32 9.2.6 Журнал аварийных событий 33 9.2.7 Параметры отопительных контуров 34 9.2.8 Параметры ГВС 36 9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 41 9.2.10 Параметры Стратегии 42 9.2.11 СРТК (система регулирования темп. в котельной) 42 9.2.12 Управление экономайзером котла 51 9.3 Экрань оперативного ввода 52 10.1 Монтаж модулей 53 10.2 Сетевой адаптер ЕХ1-RC1 54 10.3 Модуль расширения Ю-АТС8 56 10.4 Модуль расширения Ю-ДП6 55 10.5 Мониторинг входных параметров диспетчерских блоков 60 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12.1 Формирования уставки котла 52 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 <	9 ЗАДАНИЕ ПАРАМЕТРОВ И КОНФИГУРИРОВАНИЕ СУ ЭНТРОМАТИК 110М	13
9.2 Разделы меню 16 9.2.1 Общие данные 16 9.2.2 Параметры котла 26 9.2.3 Режим ТЕСТ/РЕЛЕ 26 9.2.4 Диапазон датчиков 31 9.2.5 Мониторинг 32 9.2.6 Журнал аварийных событий 33 9.2.6 Журнал аварийных событий 33 9.2.7 Параметры отопительных контуров 34 9.2.8 Параметры ГВС 36 9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 41 9.2.10 Параметры стратегии 45 9.2.12 Управление экономайзером котла 51 9.3 Экраны оперативного ввода 52 10.1 Монтаж модулей 55 10.2 Сетевой адаптер EX1-RC1 54 10.3 Модуль расширения IO-ATC8 56 10.4 Модуль расширения IO-D116 56 10.5 Мониторинг входных параметров диспетчерских блоков 66 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12.1 Формирования уставки котла 57 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 7	9.1 Структура экранного меню	13
9.2.1 Общие данные 16 9.2.2 Параметры котла 26 9.2.3 Режим ТЕСТ/РЕЛЕ 25 9.2.4 Диапазон датчиков 31 9.2.5 Мониторинг 32 9.2.6 Журнал аварийных событий 33 9.2.7 Параметры отопительных контуров 34 9.2.8 Параметры отопительных контуров 34 9.2.8 Параметры ГВС 36 9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 41 9.2.10 Параметры стратегии 45 9.2.11 СРТК (система регулирования темп. в котельной) 46 9.2.12 Управление экономайзером котла 51 9.3 Экраны оперативного ввода 52 10.1 Монтаж модулей 55 10.2 Сетевой адаптер EX1-RC1 54 10.3 Модуль расширения IO-ATC8 56 10.4 Модуль расширения IO-D116 55 10.5 Мониторинг входных параметров диспетчерских блоков 66 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12.1 Формирования уставки котла 63 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus	9.2 Разделы меню	18
9.2.2 Параметры котла 26 9.2.3 Режим ТЕСТ/РЕЛЕ 29 9.2.4 Диапазон датчиков 31 9.2.5 Мониторинг 32 9.2.6 Журнал аварийных событий 33 9.2.7 Параметры отопительных контуров 34 9.2.8 Параметры отопительных контуров 34 9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 41 9.2.10 Параметры стратегии 45 9.2.11 СРТК (система регулирования темп. в котельной) 45 9.2.12 Управление экономайзером котла 51 9.3 Экраны оперативного ввода 52 10.1 Монтаж модулей 52 10.2 Сетевой адаптер ЕХ1-RC1 54 10.3 Модуль расширения IO-ATC8 56 10.4 Модуль расширения IO-DI16 55 10.5 Мониторинг входных параметров диспетчерских блоков 63 12 ПРИЛОЖЕНИЕ 63 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 76	9.2.1 Общие данные	18
9.2.3 Режим ТЕСТ/РЕЛЕ 25 9.2.4 Диапазон датчиков 31 9.2.5 Мониторинг 32 9.2.6 Журнал аварийных событий 33 9.2.6 Журнал аварийных событий 33 9.2.7 Параметры отопительных контуров 34 9.2.8 Параметры ГВС 36 9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 41 9.2.10 Параметры стратегии 45 9.2.11 СРТК (система регулирования темп. в котельной) 45 9.2.12 Управление экономайзером котла 51 9.3 Экраны оперативного ввода 52 10.1 Монтаж модулей 52 10.2 Сетевой адаптер ЕХ1-RC1 54 10.3 Модуль расширения IO-ATC8 56 10.4 Модуль расширения IO-DI16 55 10.5 Мониторинг входных параметров диспетчерских блоков 66 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Моdbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 76	9.2.2 Параметры котла	26
9.2.4 Диапазон датчиков 31 9.2.5 Мониторинг 32 9.2.6 Журнал аварийных событий 33 9.2.7 Параметры отопительных контуров 34 9.2.8 Параметры ГВС 36 9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 41 9.2.10 Параметры стратегии 42 9.2.11 СРТК (система регулирования темп. в котельной) 46 9.2.12 Управление экономайзером котла 51 9.3 Экраны оперативного ввода 52 10 УСТАНОВКА И ПОДКЛЮЧЕНИЕ ДИСПЕТЧЕРСКИХ БЛОКОВ DBDI И DBAI 52 10.1 Монтаж модулей 53 10.2 Сетевой адаптер EX1-RC1 54 10.3 Модуль расширения Ю-АТС8 56 10.4 Модуль расширения Ю-DI16 55 10.5 Мониторинг входных параметров диспетчерских блоков 60 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Моdbus 67 12.4 Настройка порта СОМ2 контроплера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 76 12.6 Реализация уп	9.2.3 Режим ТЕСТ/РЕЛЕ	29
9.2.5 Мониторинг 32 9.2.6 Журнал аварийных событий 33 9.2.7 Параметры отопительных контуров 34 9.2.8 Параметры ГВС 36 9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 41 9.2.10 Параметры стратегии 45 9.2.11 СРТК (система регулирования темп. в котельной) 46 9.2.12 Управление экономайзером котла 51 9.3 Экраны оперативного ввода 52 10.1 Монтаж модулей 53 10.2 Сетевой адаптер EX1-RC1 54 10.3 Модуль расширения Ю-АТС8 56 10.4 Модуль расширения Ю-ОІ16 55 10.5 Мониторинг входных параметров диспетчерских блоков 60 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12.1 Формирования уставки котла 53 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Моdbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 76 12.6 Реализация управления модуляцией горелки сигналом 420 мА 75 12.7 Валица ците су ЭНТРОМАТИК 110М 76 1	9.2.4 Диапазон датчиков	31
9.2.6 Журнал аварийных событий 33 9.2.7 Параметры отопительных контуров 34 9.2.8 Параметры ГВС 36 9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 41 9.2.10 Параметры стратегии 42 9.2.11 СРТК (система регулирования темп. в котельной) 46 9.2.12 Управление экономайзером котла 51 9.3 Экраны оперативного ввода 52 10 УСТАНОВКА И ПОДКЛЮЧЕНИЕ ДИСПЕТЧЕРСКИХ БЛОКОВ DBDI И DBAI 52 10.1 Монтаж модулей 53 10.2 Сетевой адаптер EX1-RC1 54 10.3 Модуль расширения IO-ATC8 56 10.4 Модуль расширения IO-DI16 56 10.5 Мониторинг входных параметров диспетчерских блоков 60 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12.1 Формирования уставки котла 63 12.1 Формирования уставки котла 63 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, пе	9.2.5 Мониторинг	32
9.2.7 Параметры отопительных контуров 34 9.2.8 Параметры ГВС 36 9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 41 9.2.10 Параметры стратегии 42 9.2.11 СРТК (система регулирования темп. в котельной) 46 9.2.12 Управление экономайзером котла 51 9.3 Экраны оперативного ввода 52 10 УСТАНОВКА И ПОДКЛЮЧЕНИЕ ДИСПЕТЧЕРСКИХ БЛОКОВ DBDI И DBAI 52 10.1 Монтаж модулей 53 10.2 Сетевой адаптер EX1-RC1 54 10.3 Модуль расширения IO-ATC8 56 10.4 Модуль расширения IO-DI16 56 10.5 Мониторинг входных параметров диспетчерских блоков 60 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 76 12.6 Реализация управления модуляцией горелки сигналом 420 мА 75 12.7 Восямасиия управления модуляцией горелки сигналом 420 мА 76 12.7 Восям	9.2.6 Журнал аварийных событий	33
9.2.8 Параметры ГВС 36 9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 41 9.2.10 Параметры стратегии 42 9.2.11 СРТК (система регулирования темп. в котельной) 42 9.2.12 Управление экономайзером котла 51 9.3 Экраны оперативного ввода 52 10 УСТАНОВКА И ПОДКЛЮЧЕНИЕ ДИСПЕТЧЕРСКИХ БЛОКОВ DBDI И DBAI 52 10.1 Монтаж модулей 53 10.2 Сетевой адаптер EX1-RC1 54 10.3 Модуль расширения IO-ATC8 56 10.4 Модуль расширения IO-DI16 55 10.5 Мониторинг входных параметров диспетчерских блоков 60 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 63 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 76 12.6 Реализация управления модуляцией горелки сигналом 420 мА 76 12.7 Возимация порта сомо койскором корона сомо койскором колона 76 12.6 Реализация управления модуляцией горелки сигналом 420 мА 76	9.2.7 Параметры отопительных контуров	34
9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М 41 9.2.10 Параметры стратегии 45 9.2.11 СРТК (система регулирования темп. в котельной) 46 9.2.12 Управление экономайзером котла 51 9.3 Экраны оперативного ввода 52 10 УСТАНОВКА И ПОДКЛЮЧЕНИЕ ДИСПЕТЧЕРСКИХ БЛОКОВ DBDI И DBAI 52 10.1 Монтаж модулей 53 10.2 Сетевой адаптер EX1-RC1 54 10.3 Модуль расширения Ю-АТС8 56 10.4 Модуль расширения Ю-DI16 55 10.5 Мониторинг входных параметров диспетчерских блоков 60 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 76 12.6 Реализация управления модуляцией горелки сигналом 420 мА 76 12.7 Воспосита и спосовы и котла 76 12.6 Реализация управления модуляцией горелки сигналом 420 мА 76 12.7 Воспосита и порта сочи в сигисте су ЭНТРОМАТИК 110М 76	9.2.8 Параметры ГВС	36
9.2.10 Параметры стратегии 45 9.2.11 СРТК (система регулирования темп. в котельной) 46 9.2.12 Управление экономайзером котла 51 9.3 Экраны оперативного ввода 52 10 УСТАНОВКА И ПОДКЛЮЧЕНИЕ ДИСПЕТЧЕРСКИХ БЛОКОВ DBDI И DBAI 52 10.1 Монтаж модулей 52 10.2 Сетевой адаптер EX1-RC1 54 10.3 Модуль расширения IO-ATC8 56 10.4 Модуль расширения IO-DI16 56 10.5 Мониторинг входных параметров диспетчерских блоков 60 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 78 12.6 Реализация управления модуляцией горелки сигналом 420 мА 75	9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 110М	41
9.2.11 СРТК (система регулирования темп. в котельной) 44 9.2.12 Управление экономайзером котла 51 9.3 Экраны оперативного ввода 52 10 УСТАНОВКА И ПОДКЛЮЧЕНИЕ ДИСПЕТЧЕРСКИХ БЛОКОВ DBDI И DBAI 52 10.1 Монтаж модулей 53 10.2 Сетевой адаптер EX1-RC1 54 10.3 Модуль расширения IO-ATC8 56 10.4 Модуль расширения IO-DI16 59 10.5 Мониторинг входных параметров диспетчерских блоков 60 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 78 12.6 Реализация управления модуляцией горелки сигналом 420 мА 75	9.2.10 Параметры стратегии	45
9.2.12 Управление экономайзером котла 51 9.3 Экраны оперативного ввода 52 10 УСТАНОВКА И ПОДКЛЮЧЕНИЕ ДИСПЕТЧЕРСКИХ БЛОКОВ DBDI И DBAI 52 10.1 Монтаж модулей 53 10.2 Сетевой адаптер EX1-RC1 54 10.3 Модуль расширения Ю-АТС8 56 10.4 Модуль расширения Ю-ОІ16 56 10.5 Мониторинг входных параметров диспетчерских блоков 60 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 78 12.6 Реализация управления модуляцией горелки сигналом 420 мА 76 12.7 Волизация управления модуляцией горелки сигналом 420 мА 76	9.2.11 СРТК (система регулирования темп. в котельной)	48
9.3 Экраны оперативного ввода 52 10 УСТАНОВКА И ПОДКЛЮЧЕНИЕ ДИСПЕТЧЕРСКИХ БЛОКОВ DBDI И DBAI 52 10.1 Монтаж модулей 53 10.2 Сетевой адаптер EX1-RC1 54 10.3 Модуль расширения IO-ATC8 56 10.4 Модуль расширения IO-DI16 59 10.5 Мониторинг входных параметров диспетчерских блоков 60 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 78 12.6 Реализация управления модуляцией горелки сигналом 420 мА 79 12.7 Воздия управления модуляцией горелки сигналом 420 мА 79	9.2.12 Управление экономайзером котла	51
10 УСТАНОВКА И ПОДКЛЮЧЕНИЕ ДИСПЕТЧЕРСКИХ БЛОКОВ DBDI И DBAI 52 10.1 Монтаж модулей 53 10.2 Сетевой адаптер EX1-RC1 54 10.3 Модуль расширения IO-ATC8 56 10.4 Модуль расширения IO-DI16 56 10.5 Мониторинг входных параметров диспетчерских блоков 60 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 76 12.6 Реализация управления модуляцией горелки сигналом 420 мА 79 12.7 Воздиония управления модуляцией горелки сигналом 420 мА 79	9.3 Экраны оперативного ввода	52
10.1 Монтаж модулей 53 10.2 Сетевой адаптер EX1-RC1 54 10.3 Модуль расширения IO-ATC8 56 10.4 Модуль расширения IO-DI16 56 10.5 Мониторинг входных параметров диспетчерских блоков 60 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12 ПРИЛОЖЕНИЕ 63 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 76 12.6 Реализация управления модуляцией горелки сигналом 420 мА 79 12.7 Воздия из управления модуляцией горелки сигналом 420 мА 79	10 УСТАНОВКА И ПОДКЛЮЧЕНИЕ ДИСПЕТЧЕРСКИХ БЛОКОВ DBDI И DBAI	52
10.2 Сетевой адаптер EX1-RC1 54 10.3 Модуль расширения IO-ATC8 56 10.4 Модуль расширения IO-DI16 59 10.5 Мониторинг входных параметров диспетчерских блоков 60 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12 ПРИЛОЖЕНИЕ 63 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 76 12.6 Реализация управления модуляцией горелки сигналом 420 мА 79 12.7 Воздиония и провления модуляцией горелки сигналом 420 мА 79	10.1 Монтаж модулей	53
10.3 Модуль расширения Ю-АТС8 56 10.4 Модуль расширения Ю-DI16 59 10.5 Мониторинг входных параметров диспетчерских блоков 60 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12 ПРИЛОЖЕНИЕ 63 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 78 12.6 Реализация управления модуляцией горелки сигналом 420 мА 79 12.7 Воздиония управления сигионой сигналом 420 мА 79	10.2 Сетевой адаптер EX1-RC1	54
10.4 Модуль расширения IO-DI16 59 10.5 Мониторинг входных параметров диспетчерских блоков 60 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12 ПРИЛОЖЕНИЕ 63 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 76 12.6 Реализация управления модуляцией горелки сигналом 420 мА 79 12.7 Воздиония управления сигналом 420 мА 79	10.3 Модуль расширения Ю-АТС8	56
10.5 Мониторинг входных параметров диспетчерских блоков 60 11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12 ПРИЛОЖЕНИЕ 63 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 78 12.6 Реализация управления модуляцией горелки сигналом 420 мА 79 12.7 Воздиония и провления сигналом 420 мА 79	10.4 Модуль расширения Ю-DI16	59
11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ 62 12 ПРИЛОЖЕНИЕ 63 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 78 12.6 Реализация управления модуляцией горелки сигналом 420 мА 79 12.7 Воздиоция управления сисионалов систалом 420 мА 79	10.5 Мониторинг входных параметров диспетчерских блоков	60
12 ПРИЛОЖЕНИЕ 63 12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 76 12.6 Реализация управления модуляцией горелки сигналом 420 мА 79 12.7 Воздиония и продология сигналом 420 мА 79	11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ	62
12.1 Формирования уставки котла 63 12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 78 12.6 Реализация управления модуляцией горелки сигналом 420 мА 79 12.7 Воздивация управления сигналом 420 мА 79	12 ПРИЛОЖЕНИЕ	63
12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М 64 12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта СОМ2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 78 12.6 Реализация управления модуляцией горелки сигналом 420 мА 75 12.7 Воздиония и провления в социмий сорода и сталом 420 мА 79	12.1 Формирования уставки котла	63
12.3 База данных, передаваемая по протоколу Modbus 67 12.4 Настройка порта COM2 контроллера, задание ID-адреса в сети Modbus 76 12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М 78 12.6 Реализация управления модуляцией горелки сигналом 420 мА 79 12.7 Воздиония и протоколу модуляцией горелки сигналом 420 мА 79	12.2 Таблица вводимых параметров конфигурации СУ ЭНТРОМАТИК 110М	64
 12.4 Настройка порта COM2 контроллера, задание ID-адреса в сети Modbus	12.3 База данных, передаваемая по протоколу Modbus	67
12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М	12.4 Настройка порта COM2 контроллера, задание ID-адреса в сети Modbus	76
12.6 Реализация управления модуляцией горелки сигналом 420 мА	12.5 Схема подключения в щите СУ ЭНТРОМАТИК 110М	78
12.7. Россионица удростация, окономойсовом котас	12.6 Реализация управления модуляцией горелки сигналом 420 мА	79
12.7 Реализация управления экономаизером котпа	12.7 Реализация управления экономайзером котла	80

ПРЕДИСЛОВИЕ

Важные общие указания по применению

Систему управления ЭНТРОМАТИК 110М следует использовать только в соответствии с ее назначением и при соблюдении руководства по эксплуатации. Техническое обслуживание и ремонт должны производиться только уполномоченным для этого квалифицированным персоналом.

Установка должна эксплуатироваться только с теми комплектующими и запасными частями, которые рекомендованы в этом руководстве по эксплуатации. Другие комплектующие и детали, подверженные износу, могут быть использованы только тогда, когда их назначение четко оговорено для этого использования и они не влияют на рабочие характеристики и не нарушают требования по безопасной эксплуатации.

Мы оставляем за собой право на технические изменения!

Вследствие постоянного технического совершенствования оборудования возможны незначительные изменения в рисунках, функциональных решениях и технических параметрах.

Возможные источники опасности и указания по безопасной работе

Внимательно прочитайте данную инструкцию перед пуском в эксплуатацию. Все работы, требующие открывания щита системы управления, должны производиться только специализированным, обученным персоналом. Перед открыванием щита установка должна быть отключена от сети электропитания с помощью главного выключателя или устройства защиты отопительной системы.

Предупреждение о недопустимости неправильной эксплуатации установки!

Разрешается вводить и изменять только эксплуатационные параметры, указанные в данной инструкции. Ввод других параметров приводит к изменению программы системы управления, что может стать причиной неправильного функционирования установки.

Осторожно!

Защита от замерзания активна только при включенном устройстве регулирования. При выключенном устройстве регулирования выпустите воду из котла, накопительного бойлера и котельных труб отопительной установки! Только после того, как вся система будет сухой, опасность замерзания исключается.

Все неисправности отопительной установки должны быть незамедлительно устранены специализированной фирмой.

Неправильное подключение хотя бы одного датчика температуры может повлиять на работу всей системы, поскольку аналоговые входы контроллера взаимосвязаны между собой общей сигнальной «землей». Контроллер, используемый в данном изделии, не имеет гальванической развязки, поэтому перед включением питания изделия убедитесь в правильности подключения всех проводов.

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Система управления ЭНТРОМАТИК 110М создана для решения всех вопросов регулирования работы котельной установки:

- с напольными отопительными котлами в количестве от одного до пяти;
- с одноступенчатой, двухступенчатой, модулируемой горелкой, работающей на жидком топливе, на газе, или горелкой комбинированного исполнения;
- управление циркуляционным насосом и трехходовым смесительным клапаном для поддержания температуры обратного потока воды котла;
- управление отопительными контурами, работающими по программе и в соответствии с сигналами, поступающими от технологических датчиков и датчика температуры наружного воздуха и контуром ГВС (при использовании блоков расширения).

Варианты конфигурации:

1. Четыре отопительных контура (ОК1, ОК2, ОК3, ОК4);

2. Три отопительных контура и один ГВС с бойлером (ОК1, ОК2, ОК3, ГВС);

3. Два отопительных контура и один ГВС с частотным регулированием (ОК1, ОК2, ГВС)

- управление сетевыми насосами ОК и ГВС;
- Система управления ЭНТРОМАТИК 110М обеспечивает последовательное (каскадное) регулирование от двух- до пятикотловой котельной установки в зависимости от изменения общей температуры прямого потока всех котлов, которая настраивается на постоянное номинальное значение или ориентирована на изменение температуры наружного воздуха.

Дополнительно ЭНТРОМАТИК 110М снабжен терморегуляторами котла, которые позволяют в ручном режиме управлять котлом.

> СУ ЭНТРОМАТИК 110М является ведущей автоматикой и применяется с ведомой СУ ЭНТРОМАТИК 111 для управления многокотловой отопительной установкой.

Для управления отопительными контурами, ГВС, вентиляцией и мощностью горелки сигналом 4...20 мА необходимо использовать щит блоков расширения ЭНТРОМАТИК 110БР.

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СУ ЭНТРОМАТИК 100М

Контроллер

Размеры: 96 х 96 х 64 мм (3,78" х 3,78" х 2,52").

- Установка: монтаж на панели или сборной шине.
- Электропитание: 12 или 24 В пост.тока.
- Часы реального времени (RTC): обеспечивают управление функциями времени.
- Резервные батареи: защищают часы реального времени и данные системы (RTC).

Панель управления

Панель управления оснащена гграфическим экраном и клавиатурой:

- ЖК-экран показывает и определяемые пользователем текстовые сообщения (отобранными в программе НМІ-шрифтами) и разработанные пользователем графические изображения.
- Вспомогательная клавиатура имеет 16 клавиш.

Вводы/выводы

В конфигурацию контроллера СУ ЭНТРОМАТИК 110M входит:

6 дискретных выходов (рис. 4, стр. 4);

- 6 аналоговых входов (не имеют гальванической развязки) (рис. 2, стр. 4);
- 6 дискретных входов (не имеют гальванической развязки) (рис. 3, стр. 4).

Коммуникация

Контроллер имеет:

- два последовательных порта, порт 2 настроен для передачи данных по протоколу Modbus по интерфейсу RS485;
- цифровую шину CANbus для обмена данными MASTER-SLAVE (рис. 5, стр. 4);
- порт для подключения блоков расширения.

Рис. 1

Рис. 2. Аналоговые входы

Рис. 4. Дискретные выходы

+V 12 или 24 В 0V пост. тока 0V 12 или 24 В Verpoixerso 20 или 20

Рис. З. Дискретные входы

Рис. 5. Подключение сети CANbus

Таблица 1

СУ ЭНТРОМАТИК 110М			
Источник питания	210 230 В переменного тока		
Потребляемая мощность	200 Вт		
Потребляемый ток	1 A		
Максимальный ток	5A		
Аналоговые входы	420 мА, нагрузка на входе не более 243 Ом		
Дискретные входы	+24 В постоянного тока, 8 мА		
Релейные выходы	5 А (резистивной нагрузки) 1 А (индивидуальной нагрузки)		
Порт CANbus	Скорость передачи данных 20 Кбит/сек – 1 Мбит/сек. Длина кабеля до 1000 м для сети 24 В		
Рабочая температура	+5+35 °C		
Температура хранения	+5+35 °C		
Относительная влажность	Не более 80 % (без образования конденсата)		
Резервное питание от аккумулятора (контроллер)	Стандартный аккумулятор для обеспечения резервного питания на 7 лет для часов реального времени и системных данных		
Габаритные размеры	390 x 316 x 167		
Bec	5 кг		

З ВАРИАНТЫ КОНФИГУРАЦИИ ТЕПЛОВЫХ СХЕМ

Как было сказано раньше, СУ ЭНТРОМАТИК 110М является ведущей автоматикой в системе каскадного регулирования и может управлять одним или несколькими котлами (до пяти включительно) и четырьмя независимыми контурами (управление контурами осуществляется через блоки расширения, устанавливаемыми в щите блока «В») с погодозависимой функцией формирования уставки температур котла и контуров.

В зависимости от выполняемой задачи СУ ЭНТРОМАТИК 110М может работать и как самостоятельное устройство управления в однокотловых отопительных установках с разными конфигурациями системы. Ниже рассмотрены различные варианты конфигураций систем отопления, функциональность которых обеспечивает СУ ЭНТРОМАТИК 110М.

Вариант 1

Однокотловая установка без отопительных контуров, с защитой обратного потока трехходовым смесительным клапаном.

Вариант 2

Однокотловая установка с отопительными контурами, с защитой обратного потока трехходовым смесительным клапаном.

Рис. 7

Вариант 3

Однокотловая установка с отопительными контурами, с защитой обратного потока трехходовыми смесительными клапанами отопительных контуров. Варианты 1 и 2 конфигурации подойдут для использования в многокотловых отопительных установках с использованием каскадного регулятора других производителей, благодаря возможности СУ ЭНТРОМАТИК 110М работать по контакту внешнего теплового запроса.

Рис. 8

Вариант 4

Многокотловая установка с отопительными контурами, с защитой обратного потока трехходовым смесительным клапаном отопительных контуров. В данном варианте использование каскадных регуляторов сторонних производителей не целесообразно, поскольку СУ ЭНТРОМАТИК 110М, как ведущая автоматика, имеет возможность управлять многокотловыми отопительными установками по цифровой шине CANbus при использовании ведомой автоматики СУ ЭНТРОМАТИК 111.

Вариант 5

Многокотловая установка с отопительными контурами, с защитой обратного потока трехходовыми смесительными клапанами отопительных контуров.

Вариант 6

Многокотловая установка с отопительными контурами, с защитой обратного потока трехходовым смесительным клапаном котла.

Рис. 11

4 УСТАНОВКА ЩИТА

ЭНТРОМАТИК 110М представляет собой электротехнический щит (IP54) с установленным в него контроллером, переключателями, термостатами.

Перед установкой проверьте щит на присутствие внешних повреждений. Откройте лицевую панель, проверьте целостность блоков питания, капиллярных трубок термостатов.

Длина капиллярной трубки термостатов составляет 3 метра, поэтому установка щита ЭНТРОМАТИК 110М производится на котле или рядом с котлом таким образом, чтобы хватило длины капиллярной трубки

от щита до гильзы, установленной на подающем трубопроводе котла. При прокладке капиллярной трубки проследите, чтобы не было сильных перегибов капилляра (рис. 13).

Радиус загиба капиллярной трубки не должен быть менее 5 сантиметров. Капиллярная трубка должна быть защищена от механических повреждений и не должна быть под воздействием нагрузки. При прокладке капилляра избегайте его контакта с острыми кромками металлических конструкций или примите меры, исключающие этот контакт, чтобы избежать перетирания трубки при вибрации.

Рекомендации по установке щита:

- Не устанавливайте в местах с чрезмерно высокой температурой, постоянными ударами или чрезмерной вибрацией.
- Не допускайте протечки воды в изделие.
- Не допускайте попадания мусора в изделие во время установки.
- Перепроверьте всю проводку перед включением электропитания.
- Находитесь как можно дальше от проводов высокого напряжения и силового оборудования.
- Оставьте не менее 150 мм свободного пространства для вентиляции между верхними и боковыми стенками щита.
- После монтажа удалите из щита пылесосом весь мусор и пыль.

5 ЭЛЕКТРОПИТАНИЕ

ЭНТРОМАТИК 110М предназначен для эксплуатации в сетях 210 – 230 В переменного тока. В некоторых случаях там, где установлено изделие, электроэнергия не всегда стабильна, и возмущения могут вызывать скачки напряжения. Скачки напряжения и несоответствие качества электрической энергии могут вызывать некорректную работу СУ ЭНТРОМАТИК 110М и могут стать причиной выхода системы из строя. Для обеспечения надежной работы системы управления и защиты от скачков напряжения и электромагнитных помех рекомендуется устанавливать сетевые фильтры или источники бесперебойного питания без разрыва синусоиды при переключении.

- Чтобы избежать повреждения винтовых штекерных разъемов и клемм, не превышайте максимальный вращающий момент на винтах 0,5 Н•м (5 кгс•см).
- Мы рекомендуем использовать обжимные наконечники для проводов.
- Не допускается совместная прокладка кабелей низковольтного напряжения системы автоматизации и силовых кабелей переменного тока. Минимальное расстояние при параллельной прокладке проводов должно составлять 100 мм, на пересечениях – 50 мм.

Для корректного функционирования ЭНТРОМАТИК 110М необходимо правильное общее заземление. Один полюс всех цепей управления и цепей подачи питания, а также экран гибкого экранированного кабеля должны быть соответствующим образом соединены с клеммами PE.

6 ОРГАНЫ УПРАВЛЕНИЯ ЭНТРОМАТИК 111

Рис. 14

Таблица 2

элемент	ОПИСАНИЕ
Кнопка «СЕТЬ»	ВКЛ/ВЫКЛ питания
Кнопка «Режима управления»	В положении «ABTO» – управление горелкой от контроллера, термостат TR ограничивает температуру котла. В положение «РУЧНОЙ» – управление горелкой от термостата TR

7 ПОДКЛЮЧЕНИЕ К ЦИФРОВОЙ ШИНЕ CANBUS

СУ ЭНТРОМАТИК 110М, являющаяся МАСТЕРОМ в многокотловой установке, позволяет управлять каскадом, состоящим из подчиненных ЭНТРОМАТИК 111 по цифровой шине CANbus. В такой сети CANbus позволяет обмен данными между PLC.

Технические условия для CANbus

- Требования к питанию: 24 В пост.тока (±4 %) 40 мА макс. (питание подключено в ЭНТРОМАТИК 110М).
- Имеется: гальваническая развязка между CANbus и контроллером.
- Макс. длина сетевого кабеля: 1 Мбит/с-25 м, 500 Кбит/с-110 м, 250 Кбит/с-250 м, 125 Кбит/с-500 м, 100 Кбит/с-500 м

Рекомендации по подключению

- Используйте витую пару в качестве кабеля.
 Рекомендуется использовать толстый экранированный кабель витую пару DeviceNet®.
- Джампер устанавливается в начале и в конце сети CANbus.
- Защитный экран заземляется только со стороны источника питания шины (на СУ ЭНТРОМАТИК 110М).
- Расстояние между первым и последним устройством сети не должно превышать 500 м.

Перед подключением линий связи выключите питание.

Рис. 15

8 ВВОД В ЭКСПЛУАТАЦИЮ

Перед включением питания:

- проверьте правильность подключения внешних устройств и датчиков температур;
- проверьте положение переключателей на лицевой панели, они должны находиться в положении «АВТО»;
- включите питание.

8.1 Экран текущих значений

На экране текущих значений отображаются основные параметры котла и статуса отопительных контуров, о которых будет рассказано дальше.

8.2 Режим ручного управления котлом

В случае выхода из строя контроллера или в других случаях, когда невозможно управлять котлом в автоматическом режиме, предусмотрено управление котлом в ручном режиме.

Чтобы перевести котел в ручной режим работы, необходимо выполнить следующие действия:

1. Переведите переключатель режима работы в положение «РУЧ».

2. Установите температуру котла на термостате TR1.

В ручном режиме работы горелка будет работать на максимальной нагрузке.

ВНИМАНИЕ!!!

При переключении ЭНТРОМАТИК 110М из ручного в автоматический режим необходимо изменить уставку температуры котла на термостате TR1 на 115 С⁰. Если на термостате уставка будет меньше, чем уставка температуры котла на контроллере, котел в автоматическом режиме будет работать некорректно, поскольку в автоматическом режиме термостат работает как ограничитель температуры котла.

ХАРАКТЕРИСТИКИ ТЕРМОСТАТА ТВ1 и ТВ2

Диапазон регулирования температуры	0120±3 °C
Гистерезис	$dt = 4 \pm 1$ °C
Коммутационная нагрузка на контакт	10 А, при ~250 В

ХАРАКТЕРИСТИКИ ТЕРМОСТАТА STB

Диапазон регулирования температуры	110130 °C
Гистерезис	$dt = 4 \pm 1$ °C
Коммутационная нагрузка на контакт	15 А, при ~250 В

График 1. Принцип работы ручного управления котлом

8.3 Режим автоматического управления котлом

Чтобы перевести котел в автоматический режим работы, необходимо выполнить следующие действия: 1. Переведите переключатель режима работы в положение «АВТО».

2. Установите ограничение температуры котла на термостате TR1 = 115 $^\circ\text{C}.$

После выполнения вышеуказанных действий управление котлом передается контроллеру (принцип автоматического управления отображен на графике 3, стр. 26).

9 ЗАДАНИЕ ПАРАМЕТРОВ И КОНФИГУРИРОВАНИЕ СУ ЭНТРОМАТИК 110М

Для обеспечения правильной и стабильной работы СУ ЭНТРОМАТИК 110М необходимо выполнить качественную отладку и настройку агрегатов и исполнительных органов котла. Оператор должен четко понимать принцип управления и алгоритм работы системы, поскольку изменение регулируемых параметров имеют динамический характер и параметрирование, как неотъемлемая часть выполняемой работы, занимает большое количество времени.

В данном разделе будет рассказано о принципе и алгоритме управления СУ ЭНТРОМАТИК 110М об уставках и их роли в процессе работы системы в процессе работы системы.

9.1 Структура экранного меню

При включении питания ЭНТРОМАТИК 110М на дисплее контроллера отобразится экран текущих значений (Экран

1, стр. 11). Для того чтобы войти в «МЕНЮ», нажмите одновременно кнопки **>** и **4**.

Схема З

15

Схема 4

9.2 Разделы меню

9.2.1 Общие данные

С экрана «МЕНЮ» войдите в раздел «ОБЩИЕ ДАННЫЕ», нажав кнопку .

Экран 5

ВВОД ТЕКУЩЕЙ ДАТЫ И ВРЕМЕНИ

Если СУ ЭНТРОМАТИК 111 (СЛЭЙВ) связана с ЭНТРОМАТИК 110М (МАСТЕР) по шине CANbus (схема многокотловых установок), то ввода текущей даты и времени в ЭНТРОМАТИК 111 не требуется, поскольку происходит синхронизация времени и даты по цифровой шине от МАСТЕРА к СЛЭЙВАМ.

Экран 7

число котлов

Этот параметр задает количество котлов в отопительной системе. С экрана «ОБЩИЕ ДАННЫЕ» войдите в раздел «ЧИСЛО КОТЛОВ», нажав кнопку . Введите число котлов в многокотловой установке и нажмите . Если ввести единицу в данный параметр, то котел будет работать

регулирования	не	будет	(см.	конфигурацию,	стр.	5).

как самостоятельное устройство и каскадного

Диапазон ввода	Зав. уставка
1 5	2

Экран 8

₽

ТИП ГОРЕЛКИ

С экрана «ОБЩИЕ ДАННЫЕ» войдите в раздел «ТИП ГОРЕЛКИ», нажав кнопку . Выберите тип горелки, установленной на котле, нажимая кнопку . одноступенчатая, двухступенчатая, модулируемая. Кнопкой 6 опуститесь на строку «ТОПЛИВО», кнопкой выберите вид топлива, газ, Ж/Т.

Экран 10

Экран 12

При установке вида топлива Ж/Т значение минимальной температуры обратного потока котла будет не меньше 65 °С.

Для модулируемой горелки можно задать способ управления модуляцией. Более подробно см. пункт 12.6, стр. 79.

Экран 11

ЗАЩИТА КОТЛА

С экрана «ОБЩИЕ ДАННЫЕ» войдите в раздел «ЗАЩИТА КОТЛА», нажав кнопку 4.

Кнопками 16 выберите способ защиты обратного потока котла и нажмите 4 .

Таблица З

Выполняемая функция

Защита обратного потока котла трехходовым клапаном котла. Защита обратного потока котла трехходовыми клапанами отопительных контуров по датчику TSO (см. конфигурацию рис. 10, стр. 7). Если СУ ЭНТРОМАТИК 110М используется как автоматика однокотловой системы, активизировав эту функцию, убедитесь, что используется ЩИТ БЛОКОВ РАСШИРЕНИЯ ЭМ110БР (Управление ОК) и он задан в системе. ha/ Защита обратного потока котла трехходовыми клапанами отопительных контуров по минимальной температуре обратного потока котлов TKOmin (схема 7). Если СУ ЭНТРОМАТИК 110М используется как автоматика однокотловой системы, эта функция будет неактивна. Уставки ТКО для котлов должны быть одинаковы. Комбинированная защита обратного потока котла. Защита обратного потока ВЕДУЩЕГО котла осуществляется трехходовыми смесительными клапанами отопительных контуров. Собственный трехходовой клапан открыт постоянно. mno **6** ВЕДОМЫЕ котлы защищаются своими трехходовыми смесительными клапанами. (рис. 17, стр. 22). Если СУ ЭНТРОМАТИК 110М используется как автоматика однокотловой системы, эта функция будет неактивна. Для многокотловых установок, при активации функции комбинированной защиты, автоматически переводятся на

эту же функцию СУ ЭНТРОМАТИК 111.

Рис. 26

Рис. 27

СУ ЭНТРОМАТИК 110М позволяет выбрать, какие и сколько отопительных контуров будут участвовать в защите обратных потоков котлов.

Экран 17

Активация ЩИТА БЛОКОВ РАСШИРЕНИЯ ЭМ110БР

С экрана «ОБЩИЕ ДАННЫЕ» войдите в раздел «БЛОКИ РАСШИРЕНИЯ», нажав кнопку 🔶 . Установите значение «ДА» или «НЕТ», нажав кнопку 🔶 . Убедитесь, что блоки расширения подключены к порту «I/O Expansion port» контроллера соединительным кабелем, установите в данном разделе «ДА», при этом произойдет перезапуск контроллера и на экране 1 (стр. 11) отобразится надпись «БР», сигнализирующая о том, что блоки успешно подключены.

Если надпись «БР» будет в мигающем режиме, это говорит о том, что блоки в контроллере заданы, но соединения с блоками физически нет, необходимо проверить соединение и заново перезапустить контроллер, выключив питание.

Ни в коем случае не отключайте кабель от блоков расширения в процессе работы СУ ЭНТРОМАТИК 110М: контроллер перейдет в режим «СТОП», отключив управление горелкой и управление отопительными контурами.

Экран 18

РЕЖИМ КАСКАДА

В данном разделе задается последовательный или параллельный режим каскадного включения двухступенчатых горелок (см. график 2, стр. 25) Активация параллельного режима возможна при условии, что на всех котлах используются двухступенчатые горелки и в разделе «ТИП ГОРЕЛКИ» этот факт указан.

æ Включение второй ступени горелки в параллельном режиме производится по запросу стратегии. В случае обрыва связи шины CANbus шины СУ ЭНТРОМАТИК 110М ведомые котлы будут работать как самостоятельные СУ, без регулирования по стратегии.

С экрана «ОБЩИЕ ДАННЫЕ» войдите в раздел «РЕЖИМ КАСКАДА», нажав кнопку 🚽 .

Установите режим включения котлов в каскаде «ПАРАЛЛЕЛЬНОЕ ВКЛ» или «ПОСЛЕДОВАТЕЛЬНОЕ ВКЛ», нажав кнопку 🕂 .

Экран 21

СБРОС НА ЗАВОДСКИЕ НАСТРОЙКИ

В данном разделе производится сброс текущих настроек на установленные значения (пункт 12.2, стр. 64).

Для того чтобы войти в раздел, необходимо ввести пароль.

Для того чтобы сбросить параметры на заводские настройки, достаточно нажать кнопку 🚽 .

Коэффициенты ПИД-регуляторов тоже сбросятся на заводские значения.

Экран 22

9.2.2 Параметры котла

С экрана «МЕНЮ» войдите в раздел «ПАРАМЕТРЫ КОТЛА», нажав кнопку 🔶 . Выбор параметра осуществляется кнопками

Выбранный параметр отображается плавающим курсором, а в верхней части экрана экрана

отображается расшифровка этого параметра. Для ввода параметра нажмите 🚽 🛛, в числовом поле отобразится курсор, введите число и подтвердите, нажав 🗗 .

Для перехода на следующий экран нажмите 🕞.

Экран 24

Экран 23

МАКСИМАЛЬНАЯ И МИНИМАЛЬНАЯ ТЕМПЕРАТУРА КОТЛА (TKPmax, TKPmin)

Выберите параметр «ТКР	max» и нажмите 💶 .
Диапазон ввода	Зав. уставка
65155 ⁰C	110 °C
Выберите параметр «ТКР	max» и нажмите 🕂 .
Диапазон ввода	Зав. уставка
4065 °C	65 °C

Здесь параметры TKPmax и TKPmin ограничивают температурный диапазон в котором может работать котел т.е уставка рабочей температуры котла не может выйти за пределы этих диапазонов (см. график ниже).

ТКРтах – ограничение макс. темп. прямой котла

- TKPmin ограничение мин. темп. прямой котла
- ТКР уставка номинальной температуры котла
- ТКО уставка температуры обратного потока
- dTKP гистерезис (определение зоны рабочего поля)

График 3. Граница задания уставки номинальной температуры котла

СКОРОСТЬ ИЗМЕНЕНИЯ ТЕМПЕРАТУРЫ В КОТЛЕ (Трост, Тпад)

Трост – скорость роста температуры на подаче котла (°С*мин).

Это интегральная составляющая, определяющая момент блокировки второй ступени горелки. Когда температура котла зашла за верхнюю границу рабочего температурного поля, начинается интегрирование по времени разницы между верхним значением рабочего поля и текущим значением температуры в котле, после чего блокируется вторая ступень. При задании высокого значения скорости роста вторая ступень блокируется позже, при задании низкого значения – блокируется раньше (см. график 4 ниже).

Диапазон ввода	Зав. уставка
1500 ⁰С*мин	5 °С*мин

Тпад – скорость падения температуры на подаче котла (°С*мин).

Это интегральная составляющая, определяющая момент разблокировки второй ступени горелки. Когда температура котла зашла за нижнюю границу рабочего температурного поля, включается первая ступень горелки и начинается интегрирование по времени разницы между нижним значением рабочего поля и текущим значением температуры в котле. При задании высокого значения скорости падения вторая ступень разблокируется позже, при задании низкого значения – разблокируется раньше (см. график 4 ниже).

Диапазон ввода	Зав. уставка
1500 ^⁰ С*мин	5 ^⁰ С*мин

График 4. Автоматическое управление котлом

ВЫБЕГ ГОРЕЛКИ

Выбег горелки на I ступени (t1)

Параметр t1 – задает время выбега горелки на 1 ступени, тем самым предотвращает частое включение/ выключение горелки.

Диапазон ввода	
010 мин.	

Зав. уставка 2 мин.

Выбег котлового насоса (t2)

Параметр t2 – задает время выбега котлового насоса после отключения котла. В зависимости от условий и характеристики котла это значение варьируется от 0 до 20 минут, что связано с температурной инерцией котла, когда котел отдает тепло теплоносителю даже после отключения горелки

Диапазон ввода	Зав. уставка
020 мин.	5 мин.

Время работы трехходового клапана котла (tk1) Параметр tk1 – задается время работы привода трехходового клапана котла. Исходя из этого параметра формируется величина (по времени) импульса ОТКР/ЗАКР привода.

Диапазон ввода	Зав. уставка
0240 сек.	120 сек.

Экран 25

Время работы сервопривода газового дросселя горелки (t3)

Параметр t3 – задает время работы привода газового дросселя горелки (для модулируемых горелок). Исходя из этого параметра формируется величина (по времени) импульса ОТКР/ЗАКР сервопривода.

Диапазон ввода	Зав. уставка
10240 сек.	65 сек.

ТЕМПЕРАТУРА КОТЛА

Уставка номинальной температуры котла (ТКР)

Данный параметр задает рабочую температуру котла, но в зависимости от конфигурации системы в расчеты алгоритма управления могут браться и другие значения.

1. Формирование уставки ТКР через опрос отопительных контуров в однокотловой системе (см. конфигурацию на стр. 6, рис. 8 и рис. 9), за расчетную уставку берется максимальная уставка из ОК и ГВС.

2. Формирование уставки ТКР через запрос СТРАТЕГИИ по шине CANbus в многокотловых установках. В любом случае за расчетную уставку будет браться максимальное значение (см. пункт 12.1, стр. 63).

Диапазон ввода	Зав. уставка
60155 °C	95 °

Гистерезис (dTKP) – температурный гистерезис, задающий температурное поле (см. график 4, рис. 37).

Диапазон ввода	Зав. уставка
010 °C	2 °C

Уставка номинальной температуры обратки котла (TKO/TSO) – задается температура на обратном потоке котла (защитная функция котла) или задается стратегическая температура обратного потока (в многокотловых установках при функции защиты обратного потока котлов трехходовыми клапанами OK).

ЭМ11000РЭ02011114

Экран 26

Диапазон ввода	Зав. уставка
5080 °C	60 °C

Значение уставки минимальной температуры котла (TKPmin) не может быть меньше значения уставки температуры обратного потока котла (TKO) плюс 5 С⁰. Приоритет отдается защитной функции котла (см. график 3, стр. 26).

ЗАПРОС ПО ВНЕШНЕМУ КОНТАКТУ

В данной позиции определяется, будет ли котел включаться по внешнему тепловому запросу, т.е. СУ ЭНТРОМАТИК 110М может управлять котлом при использовании каскадного регулятора (термостата) других производителей.

Активация этой функции будет отображена на экране текущих значений (экран 1, стр. 11).

В некоторых случаях, например ремонт в многокотловых установках, есть необходимость котел выключить. Для чего достаточно с панели контроллера нажать кнопку 4.

О том, что котел выключен, информирует моргающий сигнал «STOP» на экране текущих значений (см. экран 1, стр. 11).

Экран 27

9.2.3 Режим тест/реле

С экрана «МЕНЮ» войдите в раздел «ТЕСТ РЕЛЕ», нажав кнопку , при этом программа прекратит свою работу, управление котлом прекратится.

Для удобства контроля правильности выполненного монтажа и прохождения сигналов управления исполнительными органами в СУ ЭНТРОМАТИК 110М предусмотрен тестовый режим «ТЕСТ РЕЛЕ».

Vision 120' ESC ВНЕШНИЙ КОНТАКТ +/ткр 95°C dTKF 2°C ₽ TKO 65°C 袻 I HET abc 2 3 5 symbol _{ahi} 4 ^{mno} 6 pgrs 7 tyv 8 wxyz 9 ີ 🖬 🕹

Экран 28

ввод нажатием ввода выключается сигнал. Нажмите стрелку влево и начнется процесс управления котлом.

Привязка выходных сигналов управления СУ ЭНТРОМАТИК 110М к исполнительным органам котла отображена в таблице ниже.

Экран 29

Таблица	4	

выходной сигнал	AДРЕС НА PLC	УПРАВЛЯЕМЫЙ ЭЛЕМЕНТ
OUT1	00	Первая ступень горелки
OUT2	01	Вторая ступень горелки ОТКР
OUT3	02	Вторая ступень горелки ЗАКР
OUT4	O3	3-ход. клапан ОТКР
OUT5	O4	3-ход. клапан ЗАКР
OUT6	O5	Насос котла НК
	ЭМ110БР	
выходной сигнал	АДРЕС НА БР	УПРАВЛЯЕМЫЙ ЭЛЕМЕНТ
OUT7	O0	3-ход. клапан ОК1
OUT8	01	3-ход. клапан ОК1
OUT9	02	Hacoc OK1
OUT10	O3	3-ход. клапан ОК2
OUT11	O4	3-ход. клапан ОК2
OUT12	O5	Hacoc OK2
OUT13	O6	3-ход. клапан ОКЗ
OUT14	07	3-ход. клапан ОКЗ
OUT15	O8	Hacoc OK3
OUT16	O9	3-ход. клапан ОК4
OUT17	O10	3-ход. клапан ОК4
OUT18	O11	Hacoc OK4
OUT19	012	Hacoc HR
OUT20	O13	Hacoc HZ

кнопками 📷 🦉 , для масштабирования нажмите 🛃

предела датчика (диапазон измерения датчика указывается на его корпусе или в паспорте на датчик).

Выбор масштабируемого датчика осуществляется

Диапазоны измерения датчиков не определяются автоматически, поэтому перед началом запуска СУ ЭНТРОМАТИК 110М обязательно проставьте диапазоны всех датчиков, участвующих в управлении.

Экран 33

symbol

mno 6

9.2.4 Диапазон датчика

ДИАПАЗОН ТКР

def 3

tyv 8

Нижний предел _

Верхний предел

ESC

+/-

≁

5

0 م

1

_, ∘C

漸

200 °C

_{ghi} 4

wxyz 9

Экран 32

👾 *Vision* 120'

abc 2

pgrs 7

9.2.5 Мониторинг

С экрана «МЕНЮ» войдите в раздел «МОНИТОРИНГ», нажав кнопку 🔶 .

На экране отображаются текущее состояние сигналов управления и текущее значение температуры / уставки на подаче и на обратке котла, отопительных контуров и ГВС. Нажмите кнопку . На экране отображается

счетчик часовой наработки горелки, который можно обнулить, нажав 🛶 на панели контроллера

При использовании блоков расширения управления отопительными контурами и ГВС на экране 36 отобразится «стрелка вправо», для мониторинга ОК и ГВС нажмите кнопку .

Экран 36

9.2.6 Журнал аварийных событий

·····•••

Экран 39

С экрана «МЕНЮ» войдите в раздел «ЖУРНАЛ АВАРИЙ», нажав кнопку 🗗.

Экран 39 содержит текущие аварийные события, эти события можно просмотреть, используя кнопки . Для просмотра архива аварийных событий нажмите .

В архиве сохраняются 20 аварий, каждая последующая авария записывается в первую строку списка, список сдвигается и последняя в списке авария удаляется.

Для очистки архива аварий нажмите 🚽

Общая авария ведомого котла отображается на экране аварий СУ ЭНТРОМАТИК 110М, как «Помеха котла», и подробно рассмотреть причину аварии можно на

Экран 40

мониторе СУ ЭНТРОМАТИК 111 соответствующего котла. Время устранения аварии в Журнал аварий не записывается.

9.2.7 Параметры отопительных контуров

Vision 120 \bigcirc ESC ПАРАМЕТРЫ ОК +/-Отоп.контур Отоп.контур ГВС част. 3 ГВС Зход. ≁ -dim 2 3 5 4 symbol ahi wxyz 9 nno **6** pgrs 7 8 •0 Экран 42

Экран 41

С экрана «МЕНЮ» войдите в раздел «ПАРАМЕТРЫ ОК», нажав кнопку . Кнопками 6 выберите позицию для параметрирования и нажмите ввод .

В данном разделе меню параметрируются только отопительные контуры (см. структуру меню, стр. 13)

Выбранный параметр отображается плавающим курсором, а в верхней части экрана отображается расшифровка этого параметра.

Для ввода параметра нажмите отобразится курсор, введите число и подтвердите, нажав - .

Для перехода на следующий экран нажмите 🕨 .

Цифра в обозначении параметра отображает номер контура, которому этот параметр присвоен.

На примере показана настройка OK1, остальные контуры имеют те же настройки.

Функции параметрирования отопительных контуров актуальна при подключенном щите блоков расширения ЭМ110БР.

МАКСИМАЛЬНАЯ ТЕМПЕРАТУРА ОК1

Максимальная и минимальная температура ОК1	
(TP1max, TP1min)	
Выберите параметр «ТР1max» и нажмите 💶.	
Диапазон ввода	Зав. уставка
65115 °C	110 °C
Выберите параметр «TP1min	» и нажмите 🗗 .
Диапазон ввода	Зав. уставка
3065 °C	55 °C

Здесь параметры **TP1max** и **TP1min** ограничивают температурный диапазон, в котором может работать OK1, т.е. уставка рабочей температуры OK1 не может выйти за пределы этих диапазонов.

Экран 43
Уставка номинальной температуры ОК1 (ТР1) ТР1 – уставка номинальной температуры ОК1. Данный параметр задает рабочую температуру ОК1.

Диапазон ввода	Зав. уставка
30150 °C	75 ⁰C

Активация температурной кривой (TP1/TU) «ДА» – уставка номинальной температуры OK1 формируется в зависимости от наружной температуры

ЗАДАНИЕ ТЕМПЕРАТУРНОЙ КРИВОЙ

ТР1 (-10) точка 1 – значение температуры ОК1 при наружной температуре –10 °C.

Диапазон ввода	Зав. уставка
20150 °C	85 °C

ТР1 (+10) точка 2 – значение температуры ОК1 при наружной температуре +10 °C.

Диапазон ввода	Зав. уставка
20150 °C	45 °C

Отключение отопительного контура (режим «Лето») TU off OK1 – значение наружной температуры при которой отключится OK. Этот параметр используется в режиме «ЛЕТО». Если наружная температура стала больше уставки и не снижалась в течение 72 часов, отопительный контур отключается. Режим «ЛЕТО» выключается, если произойдет обрыв датчика наружной температуры.

Превышение температуры над OK1 (TSP > TP1) TSP > TP1 – задается превышение над температурой отопительного контура, тем самым создается запас температуры котловой воды в случае резкого увеличения нагрузки отопительного контура (обеспечивает сглаживание при пиковых нагрузках).

Диапазон ввода	Зав. уставка
010 °C	0°C

Выбег трехходового клапана OK1 (tk1) Параметр t клап – задается время работы привода

энтророс

(TU). «НЕТ» – уставка номинальной температуры ОК1 имеет постоянное значение (заданное оператором).

В случае обрыва датчика наружной температуры отопительный контур автоматически переключается на работу по постоянной температуре.

Экран 44

Экран 45

трехходового клапана ОК. Исходя из этого параметра формируется величина (по времени) импульса ОТКР/ ЗАКР привода.

Диапазон ввода	Зав. уставка
0240 сек.	120 сек.

Выключение ОК1

Для отключения ОК1 нажмите еще раз нажмите . Статус ОК1 отображен в мониторинге и в текущих значениях (экран 3, стр. 11).

9.2.8 Параметры ГВС

0 Функции параметрирования ГВС актуальна при подключенном щите блоков расширения ЭМ110БР.

С экрана «МЕНЮ» войдите в раздел «ПАРАМЕТРЫ ГВС», нажав кнопку 🗗

Экран 46

СХЕМА ГВС

Возможные схемы конфигурации ГВС отображены на рисунках ниже.

Таблица 5

№ СХЕМЫ	КОНФИГУРАЦИЯ ГВС	
0	ГВС не задан	
	ГВС с накопительным бойлером	
1	0	1
	Регулирование трехходовым клапаном	Регулирование загрузочным насосом HR
2	ГВС с теплообменником	и частотным регулированием

CXEMA № 1 (0)

Регулирование температуры в бойлере трехходовым клапаном

CXEMA № 1 (1)

Регулирование температуры в бойлере загрузочным насосом HR

CXEMA № 2

Частотное регулирование через теплообменник

Рис. 20

СХЕМА № 1 ГВС С БОЙЛЕРОМ

Экран 48

На экране 47 (стр. 36) введите «СХЕМА 1» и нажмите кнопку

Введите способ регулирования температуры в бойлере согласно проектной тепловой схеме:

- 0 трехходовым клапаном;
- 1 загрузочным насосом.

37

РЕГУЛИРОВАНИЕ ТЕМПЕРАТУРЫ В БОЙЛЕРЕ ТРЕХХОДОВЫМ КЛАПАНОМ

На экране 47 (стр. 36) введите 0 и нажмите кнопку .

Уставка номинальной температуры ГВС (TW4) TW4 – уставка номинальной температуры ГВС. Данный параметр задает рабочую температуру ГВС.

Диапазон ввода	Зав. уставка
080 °C	60 °C

Количество включений рециркуляционного насоса HZ – данный параметр определяет количество включений рециркуляционного насоса в час (режим экономии электроэнергии). При вводе в параметр значения 0, рециркуляционный насос HZ будет работать постоянно.

Диапазон ввода	Зав. уставка
06 вкл/час.	0 вкл./час.

Время работы трехходового клапана ГВС (t клап) Параметром t клап задается время работы привода трехходового клапана ГВС. Исходя из этого параметра формируется величина (по времени) импульса ОТКР/ ЗАКР привода.

Диапазон ввода	Зав. уставка
0240 сек.	120 сек.

Экран 49

Превышение температуры ГВС

TSP > ГВС – задается превышение над температурой контура ГВС, тем самым создается запас температуры котловой воды в случае резкого увеличения нагрузки контура ГВС (обеспечивает сглаживание при пиковых нагрузках).

Диапазон ввода	Зав. уставка
010 °C	0 °C

выключение гвс

Для отключения ГВС нажмите 🕂

Для включения еще раз нажмите 🕂

Статус ГВС отображен в мониторинге и в текущих значениях (экран 3, стр. 11).

Экран 50

РЕГУЛИРОВАНИЕ ТЕМПЕРАТУРЫ В БОЙЛЕРЕ ЗАГРУЗОЧНЫМ НАСОСОМ HR

На экране 48 (стр. 37) введите 1 и нажмите кнопку

Уставка номинальной температуры ГВС (TW4) – уставка номинальной температуры ГВС. Данный параметр задает рабочую температуру ГВС.

Диапазон ввода	Зав. уставка
080 °C	60 °C

Гистерезис (dTW4) – температурный гистерезис, задающий температурное поле (см. график 6).

Диапазон ввода	Зав. уставка
010 °C.	5 °C.

Экран 51

СХЕМА № 2 ЧАСТОТНОЕ РЕГУЛИРОВАНИЕ ГВС (РИС. 20, СТР. 37)

На экране 42 (стр. 42) введите «СХЕМА 2» и нажмите кнопку

TW3 – уставка номинальной температуры на подаче потребителю. Этот параметр поддерживается работой загрузочного насоса HR4 с частотным регулированием.

Диапазон ввода	Зав. уставка
075 °C	60 °C

Количество включений рециркуляционного насоса HZ

HZ4 – данный параметр определяет количество включений рециркуляционного насоса в час (режим экономии электроэнергии).

Превышение температуры ГВС

TSP > **ГВС** – задается превышение над температурой контура ГВС, тем самым создается запас температуры котловой воды в случае резкого увеличения нагрузки контура ГВС (обеспечивает сглаживание при пиковых нагрузках).

Диапазон ввода	Зав. уставка
010 ⁰C	0°C

dTW – перепад температуры на теплообменнике. Разница температуры на входе теплообменника с температурой на выходе к потребителю (техническая характеристика теплообменника). Твх – Твых = dTW

Диапазон ввода	Зав. уставка
010 °C	3 °C

Максимально допустимая температура на подаче ГВС потребителю

TWmax – значение температуры на подаче потребителю, при которой выключается загрузочный насос HR.

Диапазон ввода	Зав. уставка
080 °C	80 °C

Экран 52

Время работы трехходового клапана ГВС (t клап.)

Параметр t клап – задается время работы привода трехходового клапана ГВС. Исходя из этого параметра формируется величина (по времени) импульса ОТКР/ ЗАКР привода.

Диапазон ввода	Зав. уставка
0240 сек.	120 сек.

Рис. 21

ПРЕВЫШЕНИЕ ТЕМПЕРАТУРЫ ГВС

TSP > ГВС – задается превышение над температурой контура ГВС.

Поэтому создается запас температуры котловой воды в случае резкого увеличения нагрузки контура ГВС (обеспечивает сглаживание при пиковых нагрузках).

Диапазон ввода	Зав. уставка
010 °C	O° O

Экран 53

МИНИМАЛЬНАЯ ЧАСТОТА ЗАГРУЗОЧНОГО НАСОСА HR

Параметр HR определяет минимальный расход теплоносителя через теплообменник.

Диапазон ввода	Зав. уставка
050 Гц	0 Гц

В некоторых случаях насос загрузки теплообменника НR выходит на свою минимальную частоту работы согласно величине управляемого сигнала и не может обеспечить циркуляцию через теплообменник из-за сопротивления магистрали. Этим параметром мы определяем минимальную частоту вращения насоса HR, которая обеспечивает циркуляцию.

выключение гвс

Для отключения ГВС нажмите 🕂

Для включения еще раз нажмите 🖌

Статус ГВС отображен в мониторинге и в текущих значениях (экран 3, стр. 11).

Экран 54

9.2.9 ПИД-регулятор СУ ЭНТРОМАТИК 100М

Общее разъяснение: как работает PID

Функция PID использует обратную связь системы, чтобы непрерывно контролировать динамический процесс. Назначение контроля PID заключается в удержании прохождения процесса как можно ближе к требуемой контрольной точке (Set Point).

Информация о PID и управлении процессом

Обычным типом управления является управление включением-выключением (On-Off). Многие системы обогрева работают по этому принципу. Нагреватель выключен, когда температура выше контрольной точки, и включается, когда температура опускается ниже контрольной точки. Запаздывание во времени реакции системы приводит к тому, что температура выходит за установленный предел и колеблется около контрольной точки.

Контроль PID позволяет минимизировать выход за установленные пределы и погасить результирующие колебания.

PID позволяет автоматически регулировать процесс посредством:

1. Получения выходного сигнала от процесса, называемого переменной процесса (Process Variable (PV)).

2. Сравнения этого выходного значения с контрольной точкой. Разница между выходной переменной процесса и Контрольной точкой называется сигналом ошибки (Error signal).

3. Использования сигнала ошибки для регулирования выходного сигнала контроллера, называемого управляющей переменной (Control Variable (CV)), для удержания прохождения процесса в контрольной точке. Имейте в виду, что этот выходной сигнал может быть аналоговым или пропорциональным времени значением переменной.

АВТОНАСТРОЙКА ПИД-регулятора

Экран 55

С экрана «МЕНЮ» войдите в раздел «АВТОНАСТРОЙКА ПИД», нажав кнопку 🖊 . Для входа в редактор ПИДрегуляторов введите пароль. Для выхода в «МЕНЮ» нажмите кнопку ESC .

При правильном вводе пароля откроется экран выбора ПИД-регулятора. Выбор ПИД-регулятора осуществляется кнопками " 💑 6. Выбрав редактируемый ПИД-регулятор, нажмите кнопку 🗸

На примере рассмотрим ПИД-регулятор

модулирования второй ступени горелки, остальные ПИД-регуляторы настраиваются аналогично. На экране 57 выберите пункт «Горелка» и нажмите кнопку 🗗 .

На данном экране (экран 58) задаются коэффициенты ПИД-регулятора модуляции горелки и частота опроса ПИД.

Экран 57

- Зона пропорционального регулирования может превышать 100 %. В этом случае контроль PID применяется по всему рабочему диапазону.
 - Обширная зона пропорционального регулирования увеличивает стабильность системы, но одновременно увеличивает колебания во время стабильной фазы.
 - Слишком узкая зона пропорционального регулирования заставит систему реагировать так, как при управлении в режиме ВКЛ-ВЫКЛ, и переходить через контрольную точку или не доходить до нее.
 - Можно увеличить зону пропорционального регулирования или интегральное время, чтобы уменьшить перерегулирование и стабилизировать систему.

ПРИМЕР

Значение области температур, в которой может работать ПИД-регулятор, равен 0 – 200 °С (диапазон измерения датчика), полный диапазон равен 200 °С.

Зона пропорционального регулирования установлена в значение 10 %. Это означает, что диапазон зоны пропорционального регулирования составляет 60 – 100 °C.

Если температура находится вне зоны пропорционального регулирования, функция PID не действует.

Коэффициент усиления Кр

Кр – зона пропорционального регулирования – это диапазон, заданный около уставки. Он выражается в процентах от диапазона температуры датчика котла. Если температура котла находится в пределах этого диапазона, функция PID активна. Задаваемый диапазон от 0 до 1000 с, где 1 = 0,1 %.

Коэффициент интегрирования Ті

Устанавливаемое вами интегральное время – это количество времени (рассчитываемое контроллером), требуемое для достижения процессом заданной уставки температуры котла. Имейте в виду, что если вы установите короткое интегральное время, функция будет реагировать быстро и может "перескочить" через уставку. Установка большего значения интегрального времени приведет к более медленной реакции. Как правило, значение интегральной составляющей равна выбегу привода исполнительного органа. Задаваемый диапазон равен от 0 до 1000 сек.

Выходной сигнал CV контроллера может достигнуть 100 % и остаться на этом уровне, это состояние называется насыщением. Это может произойти, например, если процесс не может достигнуть контрольной точки. Это приводит к тому, что сигнал ошибки остается "застрявшим" в положительном или отрицательном диапазоне. В этом случае воздействие по интегралу будет становиться больше и больше, поскольку со временем ошибка

накапливается. Это называется интегральной "накруткой", которая может заставить контроллер выйти за контрольную точку с большим запасом.

Td – производное воздействие соответствует темпу и направлению изменения вошибке (текущее значение температура котла – уставка). Это означает, что быстрое изменение в ошибке вызывает сильную реакцию от контроллера. Воздействие по производной «предвидит» значение текущей температуры в котле по отношению к уставке и соответственно регулирует выходное значение контроллера, таким образом укорачивая время реакции функции PID. Задаваемый диапазон от – 0 до 1000 сек.

Частота опроса Ts есть не что иное, как частота расчета реакции контура ПИД-регулирования. Результатом каждого расчета является новое значение управляющего выхода. Используйте этот параметр для определения интервалов между обновлениями функции PID в единицах, равных 10 мсек.

См. экран 59 для активации функции автонастройки ПИД-регулятора модуляции горелки. Данную функцию можно активизировать в любое время, при условии что значение текущей температуры котла меньше, чем уставка котла, нажатием кнопки . Чтобы отменить автонастройку, нажмите еще раз .

Функция автонастройки доступна только для модулируемых горелок, не забудьте указать тип горелки «модулируемая» в разделе «ОБЩИЕ ПАРАМЕТРЫ».

Изменения, которые влияют на настройку контура, должны выполняться только уполномоченным персоналом, в совершенстве знакомым со всеми аспектами процесса. Применение процедур автонастройки контура оказывает влияние на процесс, в том числе вызывая большие изменения значения управляющего выхода. Чтобы минимизировать опасность травмирования персонала или повреждения оборудования, убедитесь, что вы тщательно проанализировали последствия любых изменений. Автонастройка в ЭНТРОМАТИК 110М не заменяет необходимость знания процесса.

Экран 59

Таблица 6. Статус ПИД-регулятора

ЗНАЧЕНИЕ	СООБЩЕНИЕ
0	Изначально устанавливается в 0 при активации конфигурации.
1, 2, 3	Автонастройка в процессе выполнения.
4	ПИД-регулятор выполняет вычисления.
5,6	Изменение уставки в процессе выполнения.
7	Интегральная накрутка.
8	Свертывание воздействия по интегралу.
9	Режим паузы, интеграл и дифференциал к настоящему времени не вычисляются.
10, 11	Управляющий выход ПРЕВЫШАЕТ пропорциональную полосу, никакое вычисление не выполняется.
-1	Нулевая зона пропорционального регулирования.
-4	Интегральное переполнение достигло максимума, равного 100 000. PID не допустит дальнейшего увеличения интегрального значения.
-710	Ошибка автонастройки, не удалось рассчитать параметры PID.
-11	Помехи составляют более 5% от диапазона входного сигнала.

ЭНТРОРОС

9.2.10 Параметры стратегии

Экран 60

С экрана «МЕНЮ» войдите в раздел «СТРАТЕГИЯ», нажав кнопку 🗗 .

Выбор параметра осуществляется кнопками

Выбранный параметр отображается плавающим курсором, а в верхней части экрана отображается расшифровка этого параметра. Для ввода параметра нажмите . в числовом поле отобразится курсор, введите число и подтвердите, нажав .

Для перехода на следующий экран нажмите

Максимальная и минимальная температура стратегии (TSPmax, TSPmin)

Экран 61

Выберите параметр «TSPmax» и нажмите 💶 .		
Диапазон ввода	Зав. уставка	
20115 °C	100 °C	
Выберите параметр «TSPmir	» и нажмите 🗗 .	
Диапазон ввода	Зав. уставка	
080 °C	60 °C	

Здесь параметры TSPmax и TSPmin ограничивают температурный диапазон, в котором может работать многокотловая установка т.е уставка рабочей температуры стратегии не может выйти за пределы этих диапазонов (см. график 7).

ТЅРтах – ограничение макс. темп. стратегии

TSPmin – ограничение мин. темп. стратегии

dTSP - гистерезис (определение зоны рабочего поля)

Скорость изменения температуры стратегии (Трост, Тпад)

Трост – скорость роста температуры на подаче стратегии (^оС*мин). Это интегральная составляющая, определяющая момент блокировки последующего в каскаде котла. Когда температура стратегии зашла за верхнюю границу рабочего температурного поля, начинается интегрирование по времени разницы между верхней границей и текущим значением температуры стратегии, после чего блокируется ведомый котел. При задании высокого значения скорости роста ведомый котел блокируется позже, при задании низкого значения – блокируется раньше (см. график 8).

Диапазон ввода	Зав. уставка
1500 ⁰С*мин	5 ⁰С*мин

Тпад – скорость падения температуры на подаче стратегии (^оС*мин). Это интегральная составляющая, определяющая момент разблокировки ведомого котла. Когда температура стратегии зашла за нижнюю границу рабочего температурного поля, начинается интегрирование по времени разницы между нижним значением рабочего поля и текущим значением температуры стратегии. При задании высокого значения скорости падения ведомый котел разблокируется позже, при задании низкого значения – разблокируется раньше (см. график 8).

Диапазон ввода	Зав. уставка
1500 °С*мин	5 °С*мин

Уставка температуры стратегии (TSP) – уставка температуры воды на общем трубопроводе подачи котлового контура (стратегическая температура). Данный параметр участвует в процессе каскадного управления многокотловой установки. Значение уставки ограничено предельными значением TSPmax и TSPmin.

Диапазон ввода	Зав. уставка
20155 °C	95 °C

Гистерезис (dTSP) – температурный гистерезис, задающий температурное поле (см. график 8, рис. 44).

Диапазон ввода	Зав. уставка
010 °C	2 °C

t_cascad – переключение последовательности котлов в каскаде. По истечении установленных здесь значений времени последует перестановка последовательности подключения/отключения котлов в каскаде. Котел со следующем по старшинству адресу станет выполнять функцию ведущего котла.

Диапазон ввода	Зав. уставка
1500 часов	100 часов

УСТАНОВКА КАСКАДА

Для установки требуемой последовательности работы

При выборе последовательности «АВТО» каскад будет меняться по истечении заданного времени t_cascad.

каскада кнопками 🚮 🐻 выберите нужную

последовательность и нажмите кнопку 🗸

✓ Vision 120[™] ESC ВЫБОР КАСКАДА +/-1-2-3-4-5 4-5-1-2-3 2-3-4-5-1 5-1-2-3-4 3-4-5-1-2 ABTO ₽ Текущий каскад 1-2-3-4-5 symbol _{ghi} 4 2 3 5 wxyz 9 0 م 8 nno **6** _{pqrs} 7 tyv

Экран 62

TKP > TSP – превышение температуры котлов над стратегией. Зависит от характера изменения нагрузки на стратегии и обеспечивает горячий резерв в случае пиковых нагрузок. Задается в пределах от 0 до 10°С.

Диапазон ввода	Зав. уставка
010 °C	0°C

ЗАДАНИЕ ТЕМПЕРАТУРНОЙ КРИВОЙ

В случае конфигурации многокотловой установки, когда не используются блоки расширения (нет отопительных контуров), есть возможность работы стратегии с учетом изменения температуры наружного воздуха.

TSP/-10 точка 1 – значение температуры стратегии при наружной температуре –10 °C.

Экран 63

TSP/+10 точка 2 – значение температуры стратегии при наружной температуре +10 °C.

Диапазон ввода	Зав. уставка
0100 °C	45 ⁰C

Активация температурной кривой (TSP/TU) «ДА» – уставка номинальной температуры стратегии формируется в зависимости от наружной температуры (TU). «НЕТ» – уставка номинальной температуры стратегии имеет постоянное значение (задается оператором).

9.2.11 СРТК (система регулирования температуры в котельной)

↓

......

Vision 120" ESC CXEMA № <u>0</u> +/-0 – нет вент./отопл. 1 – вент./колорифер ₽ D - две вентустановки 2 1 dia ghi 4 5 symbol 1 2 3 0 م ^{nno} 6 tyv 8 wxyz 9 _{pqrs} 7

Экран 65

Экран 64

С экрана «МЕНЮ» войдите в раздел «СРТК», нажав кнопку 🕢 .

Схема СРТК

Возможные схемы конфигурации СРТК отображены на рисунках ниже.

№ СХЕМЫ	КОНФИГУРАЦИЯ СРТК
0	СРТК не задана
1	Система с вентилятором (охладитель) и калорифером (нагреватель)
2	Две вентиляторные установки

Рис. 24

Рис. 25

CXEMA № 1

На экране 65 (стр. 48) введите способ регулирования температуры в котельной согласно проектной тепловой схеме и нажмите .

1 – вентилятор/калорифер (рис. 24, стр. 48);

ТZв – рабочая температура вентилятора. Данный параметр устанавливает границу максимальной температуры помещения.

Диапазон ввода	Зав. уставка
050 °C	25 °C

dTZB – температурный гистерезис, определяет рабочую область работы вентилятора.

Экран 66

CXEMA № 2

На экране 64 на стр. 48 введите способ регулирования температуры в котельной согласно проектной тепловой схеме и нажмите .

2 - две вентиляционных установки (рис. 25, стр. 48);

TZ – рабочая температура в помещении котельной. Данный параметр устанавливает постоянно поддерживаемую температуру помещения.

Диапазон ввода	Зав. уставка
040 °C	20 °C

dTZ - температурный гистерезис.

Диапазон ввода	Зав. уставка
010 °C	3 °C

Диапазон ввода	Зав. уставка
030 °C	3 °C

ТZк – рабочая температура калорифера. Данный параметр устанавливает границу минимальной температуры помещения.

Диапазон ввода	Зав. уставка
050 °C	25 °C

dTZк – температурный гистерезис, определяет рабочую область работы калорифера.

Диапазон ввода	Зав. уставка
030 °C	3 °C

График 10

ВУ – выбор ведущей вентустановки (1 или 2). В многокотловых отопительных системах вентустановки служат для притока воздуха, идущего на горение. В зависимости от количества работающих горелок на панели контроллера можно задать порядок включения ВУ.

Кнопками <u>6</u> выбирается котел, на котором запускается вентустановка (последовательность включения котлов в каскаде роли не играет, берется фактическое значение работающих горелок) на выбранной позиции нажмите <u>4</u>.

ПРИМЕР

В пятикотловой отопительной системе первая ВУ1 запускается при работе двух котлов, вторая ВУ2 включается при работе четырех котлов (экран 68, стр. 50).

Экран 67

На рисунках 24 и 25 (стр. 48) показаны схемы, в которых используются отопительные контуры, подключенные к «нагревателям», в данном примере ОК1. В настройках отопительного контура, необходимо указать назначение «ОК – ВЕНТИЛЯЦИЯ».

В зависимости от конфигурации можно назначить только один отопительный контур подключенного на ВЕНТИЛЯЦИЮ. Контур, который будет назначен на ВЕНТИЛЯЦИЮ, будет работать с учетом уставки рабочей температуры помещения котельной (схема 1 – ТZк, схема 2 – TZ), температурная кривая этого контура будет смещаться вверх или вниз в зависимости от уставки (см. график 12).

9.2.12 Управление экономайзером котла

Для управления экономайзером котла (см. рис. 36) в Энтроматик 110М задействуется канал управления отопительным контуром 1. Для этого с панели контроллера зайти в раздел «Параметры ОК» (см. пункт 9.2.7, стр. 34) и задать функцию управления для ОК1 «ЭКОНОМАЙЗЕР».

Управление предусматривает поддержание постоянной температуры в циркуляционном контуре экономайзера посредством ОТКР/ЗАКР трехходового смесительного клапана. При понижении температуры ниже заданной уставки трехходовой клапан ЗАКР, при повышении – ОТКР (управление клапаном происходит по ПИД-закону).

Включение циркуляционного насоса экономайзера происходит по сигналу включения (запроса мощности) горелки котла. Отключается насос с выбегом 5 минут после отключения горелки (снятия запроса на мощность).

Экран 69

Задание уставки температуры экономайзера

ТР1 – уставка температуры экономайзера. Данный параметр задает рабочую температуру экономайзера.

Диапазон ввода	Зав. уставка
30115 °C	60 °C
∰ <i>Vision</i> 120™	ESC
	<mark>· ● </mark> → ● · · · ·
symbol abc 2 def 3 ghi 4	4 04 5
mno U pqrs / tyv O wxyz	

Экран 70

Параметр **t клап** – задается время работы привода трехходового клапана. Исходя из этого параметра формируется величина (по времени) импульса ОТКР/ ЗАКР привода.

Экран 72

Экран 71

9.3 Экраны оперативного ввода

С точки зрения удобства интерфейса в СУ ЭНТРОМАТИК 110М предусмотрены экраны оперативного ввода уставок рабочих температур котла, отопительных контуров и ГВС.

Для перехода на экраны оперативного ввода с экрана текущих значений нажмите 🖌 . Кнопками выбирается параметр для изменения. **"1**

Экран 73

Диспетчерские блоки предназначены для передачи дополнительной информации в диспетчерскую в виде необработанных данных, т.е все ВХОДЫ, подключенные к блокам, адресуются проектировщиком на стадии проектирования.

Диспетчерский блок дискретных входов DBDI состоит из модулей:

- один сетевой адаптер EX-RC1;
- до восьми модулей дискретных входов IO-DI16 (от 1 до 128 точек).

Диспетчерский блок аналоговых входов DBAI состоит из модулей:

- один сетевой адаптер EX- RC1;
- до четырех модулей аналоговых входов IO-ATC8 (от 1 до 32 точек).

Количество модулей в диспетчерских блоках может варьироваться в зависимости от потребности в количестве входных данных. Диспетчерский блок DBDI всегда должен иметь сетевой адрес 6, а диспетчерский блок DBAI - сетевой адрес 7.

РЕКОМЕНДАЦИИ ПО УСТАНОВКЕ

1. Не устанавливайте в местах с избыточной или электропроводящей пылью, агрессивным или воспламеняющимся газом, высокой влажностью, избыточным теплом, постоянными ударами или сильной вибрацией.

2. Оставьте не менее 10 мм для вентиляции между верхом и низом приборов и стенками корпуса.

- 3. Не допускайте попадания воды в приборы.
- 4. Во время монтажа не допускайте попадания мусора внутрь приборов.

Рис. 27

000	₂ ⌀ Модуль № 1	Модуль № 2	Модуль № З	Модуль № 4	
	• • • • • • • • • • • • • • • • • • • •	•••••••	• • • • • • • • • • • • • • • • • • • •	••••••	
VINITRONICS EX-RC1	Adapter Adapter Adapter R Adapter R Adapter R Adapter R Adapter R Adapter R Adapter R Adapter R Adapter R Adapter R Adapter R Adapter R Adapter R Adapter R Adapter Adapt	Mar. dom Mar. dom Mar. dom Mar. dom L_p_1 L_2 L_p_1 L UNITRONICS IO-ATC8 RUN AI 1 2 JOUT OF RANGE 4 5 6 7 1 1 2 0UT OF RANGE 4 5 6 7 1 1 1 3 10 1 1 5 6 7	No. No. No. No. No. No. Loi Li Li Li Li Li UNITRONICS IO-ATC8 RUN Ai 1 2 OUT OF RANGE 4 5 6 7	データーの パーク パーク <th td="" パーク<=""></th>	
	• • • • • • • • • • • • • • • • • • • •	0000000000000	00000000000	000000000000	

Рис. 28

10.1 Монтаж модулей

Монтаж на рейку DIN

Установите прибор на рейку DIN, как показано на

рис. 39-а, 39-б. Прибор должен быть расположен на рейке DIN без перекосов.

Рис. 29

Рис. 30

ПРИВИНЧИВАНИЕ

Рисунок 31 выполнен в масштабе. Его можно использовать как руководство по креплению модулей. Тип монтажного винта - МЗ или NC6-32.

Данные размеры относятся ко всем модулям.

Подключите модули к адаптеру расширения так, как это показано на рис. 19, стр. 16.

> Во избежание повреждения системы не подсоединяйте и не разъединяйте прибор при включенном питании.

10.2 Сетевой адаптер EX1-RC1

Рис. 32

Ниже показана структура подключения в сеть CANbus, диспетчерские блоки расположены в конце сети и у каждого блока есть свой сетевой адрес, который

задается с помощью DIP - микропереключателей на сетевом адаптере (рис. 32, позиция 6).

 A) Положение DIP – переключателей для диспетчерского блока DBDI (дискретных входов) соответствует адресу ID6.

OFF	1	2	3	4	5	6
Рис. З	3					

А) Положение DIP – переключателей для диспетчерского блока DBAI (аналоговых входов) соответствует адресу ID7.

ПОДКЛЮЧЕНИЕ К ЦИФРОВОЙ ШИНЕ CANBUS

В сеть может быть подключен и один из двух диспетчерских блоков, но сетевые адреса для него свои.

Обязательно подключите согласующий резистор, как показано на рис. 35. Резистор поставляется в комплекте с сетевым адаптером. Перед подключением линии связи отключите питание.

Таблица 7

СТАТУС ИНДИКАТОРОВ				
Запоший (РШР)	Горит	Питание включено		
	Не горит	Нет питания		
Зеленый	Горит постоянно	Связь с подключенными модулями установлена		
(I/O COMM)	Горит прерывисто	Сетевой адаптер в режиме «СТОП»		
Зеленый	Горит	Связь адаптера с контроллером установлена		
(Bus COMM)	Не горит	Нет связи адаптера с контроллером		

10.3 Модуль расширения ІО-АТС8

АНАЛОГОВЫЕ ВХОДЫ

- Экраны сигнального кабеля должны быть подсоединины у источника сигнала.
- Входы могут настраиваться как термопара, ток или напряжение.

Для настройки:

1. Используйте соответствующую разводку, как показано на рис. 37.

2. Откройте прибор и установите перемычки в соответствии с инструкциями.

- Адаптер и сигналы СОМ аналоговых входов должны быть подсоединены к одному и тому же сигналу 0В.
- Сигналы СОМ каждого канала внутренне закорочены.
- При установке на ток/напряжение каждый из 2 входов имеет общий сигнал СОМ.

Перед открытием прибора прикоснитесь к заземленному предмету, чтобы снять электростатический заряд. Избегайте прямого соприкосновения с печатной платой. Перед открытием прибора отключите питание и отсоедините все провода.

Чтобы изменить положение перемычек отдельного входа, сначала откройте прибор, поддев заднюю крышку кончиком плоской отвертки. Точки вставки отвертки расположены на обеих сторонах модуля.

Рис. 37

1. Откройте первую сторону, вставив лезвие отвертки в промежуток между нижним и верхним корпусами над двумя пластмассовыми выступами, как показано на рис. 37 и осторожно нажмите ее вверх.

2. Соблюдая осторожность, чтобы не повредить кабель, откройте другую сторону прибора, вставив острие отвертки, как показано на рис. 38, и осторожно нажав вверх.

Рис. 38

3. Осторожно снимите верхнюю крышку прибора (рис. 39, рис. 40).

Рис. 39

Рис. 40

4. Перемычки показаны справа (рис. 41). Измените установки перемычек в соответствии с таблицей 8.

УСТАНОВКА ПЕРЕМЫЧЕК

В таблице ниже показано, как установить отдельную перемычку для того, чтобы изменить функции отдельного входа.

Несовместимые установки перемычек и разводка могут серьезно повредить прибор.

Таблица 8

	Перемычка#	Термопара *	Напряжение	Ток
BYOR 0	1	В	A	А
БЛОД О	2	В	A	в
	3	В	A	А
влод і	4	В	A	в
BYOE 2	5	В	А	А
влод 2	6	В	A	в
вход з	7	В	A	А
	8	В	A	в
BYOT 4	9	В	A	А
влод 4	10	В	A	в
	11	В	A	А
влод 5	12	В	A	в
DVOIL 6	13	В	A	А
ВХОД 6	14	В	A	в
	15	В	A	А
вход 7	16	В	A	в

* Заводские установки по умолчанию

В диспетчерском блоке используются датчики 4...20 мА. Использование других типов датчиков приведет к некорректной работе программы, поэтому установите перемычки на входах в соответствующее положение для тока.

Таблица 9

Аналоговые входы				
Количество входов	8 (несимметричные)			
Диапазон входа	420 мА			
Режим преобразования	БЫСТРЫЙ			
Сопротивление нагрузки	500 Ом			
Гальваническая развязка	НЕТ			
Цифровое разрешение	819 - 4095			

Таблица 10

Статус индикаторов						
Зеленый	Горит постоянно	Связь между модулем и адаптером установлена				
(RUN)	Горит прерывисто	Нет связи модуля с адаптером				
Красный	Горит	Вход получает ток, превышающий входной диапазон				

Дискретные входы

Каждая группа входов может быть подключена как рпр-входы (источник) или прп-входы (приемник).

Таблица 11. Характеристики входов

Количество входов	16 (две группы)			
	pnp	0-5 В пост.тока для логики «0» 1728,8 В пост.тока для логики «1»		
Входное напряжение	npn	1728,8 В пост.тока/<1,1 мА для логики «0» 05 В пост.тока/>4,3 мА для логики «1»		
Входной ток	6 мА, 24 В пост.тока			

Таблица 12. Статус индикаторов

Статус индикаторов						
Зеленый (BUN)	Горит постоянно	Связь между модулем и адаптером установлена.				
(11014)	Горит прерывисто	Нет связи модуля с адаптером.				
Зеленый (IN)	Горит	Вход активен.				

10.5 Мониторинг входных параметров диспетчерских блоков

Чтобы проверить соответствие точек ввода и статус подключения диспетчерских блоков в сети CANbus, необходимо с экрана «МЕНЮ» войти в раздел «ДИСПЕТЧЕРСКИЕ БЛОКИ», нажав кнопку (мониторинг диспетчерских блоков осуществляется только из СУ ЭНТРОМАТИК 110М).

Мониторинг диспетчерского блока дискретных входов DBDI

С экрана 76 зайдите в раздел «ДИСКРЕТНЫЕ ВХОДЫ», нажав кнопку 🖊 .

Экран 77

Мониторинг диспетчерского блока аналоговых входов DBAI

С	экрана	67	стр	елками	◀	Ш		ΒЫ	берите	рази	цел
«А	НАЛОГ	OBE	ЫE	ВХОДЫ»	И	на	жми	те	кнопку	€-	

Данные, переданные через диспетчерские блоки, могут быть обработаны и масштабированы в SCADA

или другой программой обработки данных, на которую данные поступают. Диапазон цифровых значений для датчика 4...20 мА соответствует 819...4095.

1 Статус подключения CANbus **[™]** *Vision* 120[™] 1 ESC 2 Значение с аналогового входа в цифровом виде 2 диспет.блоков в сети +/-Al1 0 Al5 0 Al2 0 Al6 0 Al3 0 Al7 0 ₽ Al4 0 Al8 0

Экран 78

symbol 1

mno **6**

abc 2

pqrs 7

def 3

tyv 8

_{ghi} 4

wxyz 9

5

•0

11 НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Таблица 13

Событие	Алгоритм работы	Способы устранения
Обрыв датчика температуры на подаче котла (ТКР)	Котел становится последним в каскаде, в ПИД- регулятор горелки загружается температура на об- ратке котла (ТКО) плюс десять градусов.	Проверьте правильность подключения датчика ТКР, убедитесь, что он исправный. Проверьте правильность заданных диапазонов датчика в контроллере (стр. 27).
Обрыв датчика температуры на обратке котла (ТКО)	Котел становится последним в каскаде, в ПИД- регулятор трехходового клапана загружается тем- пература на подаче котла (ТКР) минус десять градусов.	Проверьте правильность подключения датчика ТКО, убедитесь, что он исправный. Проверьте правильность заданных диапазонов датчика в контроллере (стр. 27).
Обрыв датчика температуры на подаче отопительного контура (TP)	Управление трехходовым клапаном прекращается, сетевой насос работает.	Проверьте правильность подключения датчика ТКО, убедитесь, что он исправный. Проверьте правильность заданных диапазонов датчика в контроллере (стр. 27).
Обрыв датчика температуры на подаче ГВС (TW4)	Управление трехходовым клапаном прекращается, загрузочный насос HR выключается.	Проверьте правильность подключения датчика TW4, убедитесь, что он исправный. Проверьте правильность заданных диапазонов датчика в контроллере (стр. 27).
Обрыв датчика температуры на подаче ГВС (TW3) СХЕМА2	Управление трехходовым клапаном продолжается, загрузочный насос HR работает на минимальной частоте.	Проверьте правильность подключения датчика TW3, убедитесь, что он исправный. Проверьте правильность заданных диапазонов датчика в контроллере (стр. 27).
Обрыв датчика температуры на подаче стратегии (TSP)	Котлы работают самостоятельно по своей температуре.	Проверьте правильность подключения датчика TSP, убедитесь, что он исправный. Проверьте правильность заданных диапазонов датчика в контроллере (стр. 27).
Обрыв датчика температуры наружного воздуха (TU)	Работа контуров по температурной кривой блокируется. Контура работают по уставке, заданной оператором.	Проверьте правильность подключения датчика TU, убедитесь, что он исправный. Проверьте правильность заданных диапазонов датчика в контроллере (схема 4, стр. 16).
Обрыв датчика температуры помещения (TZ)	Выходы управления вентилятором и калорифером блокируются.	Проверьте правильность подключения датчика TZ, убедитесь, что он исправный. Проверьте правильность заданных диапазонов датчика в контроллере (стр. 27).
Обрыв датчика температуры на обратке стратегии (TSO)	Функция защиты котла от холодной обратки вы- ключается.	Проверьте правильность подключения датчика TSO, убедитесь, что он исправный. Проверьте правильность заданных диапазонов датчика в контроллере (стр. 27).
НЕТ СЕТИ CANbus	Котел работает самостоятельно по собственной уставке ТКР.	Проверьте правильность подключения цифровой шины CANbus, наличие питания на шине +24B (клеммы +V и -V).
НЕТ СВЯЗИ С БР	Щит блоков расширения ЭМ110БР отключает управление отопительными контурами (релейные выходы откл.).	Проверьте правильность подключения кабеля соединения контроллера с блоками расширения (стр. 6, рис. 9), после подключения перезапустите контроллер.
Горелка не запускается	На экране 35 (разд. «Мониторинг», стр. 32) сигнал на запуск 1 ст. горелки ВКЛ.	Проверьте правильность соединения ЭНТРОМАТИК 100M с горелкой. Переключатель SA1 должен быть в положении 2, SA2 – в положении 4 (стр. 12). Проверьте установку термостата TR1 (график 1, стр. 12).
Горелка не выходит на 2 ступень	На экране 35 (разд. «Мониторинг», стр. 32) сигнал на запуск 2 ст. горелки ВКЛ.	Проверьте правильность соединения ЭНТРОМАТИК 100M с горелкой. Переключатель SA1 должен быть в положении 2, SA2 – в положении 4 (стр. 12). Проверьте установку термостата TR2 (график 1, стр. 12).
Котел горячий	Котел выключается при предельной температуре 120 °C.	Проверьте правильность настройки терморегуляторов TR1 и TR2. Проверьте срабатывание внешней цепи безопасности. Проверьте правильность расключения горелки.
Котел холодный	Горелка не включается. Запрос на включение при- сутствует.	Проверьте правильность настройки терморегуляторов TR1 и TR2. Проверьте внешние предохранительные устройства. Проверьте правильность расключения горелки.
Авария горелки	Котел выключается.	Проверьте неисправности по инструкции на горелку.
Авария котла	Котел выключается.	Проверьте давление в котле, оно не должно быть больше максимально установленного и меньше минимально установленного. Проверьте внешние предохранительные устройства. Снимите блокировку, нажав кнопку SB3.

12 ПРИЛОЖЕНИЕ

12.1 Схема формирования уставки котла

энтророс

12.2 Таблица вводимых параметров конфигурации ЭНТРОМАТИК 100М

Таблица 14

Раздел	Подраздел	Обозначение параметра	НАЗНАЧЕНИЕ	Диапазон ввода	Завод. уставка	Уставки операт.
	ДАТА/ВРЕМЯ					
	ЧИСЛО КОТЛОВ		Ввод числа котлов в системе	15	2	
D	ТИП ГОРЕЛКИ		Выбор типа горелки, установленной на котел, и вид топлива	15	2	
щие данны	Защита котла		Выбор способа защиты обратного потока котла	3-ход котла 3-ход ОК с TSO 3-ход ОК по TKOmin комбинированная	3-ход котла	
06	Блоки расши- рения (БР)		Указывает контроллеру, будут ли использоваться блоки расширения	ДА - НЕТ	HET	
	РЕЖИМ КАСКАДА		Последовательный или параллельный режим включения ступеней двухступенчатых горелок	Послед. – Паралл.	Паралл.	
	Сброс на зав. настройки					
		TKPmax	Ограничение макс. темп. диапазона уставки котла	65155 °C	110 ºC	
		TKPmin	Ограничение миним. темп. диапазона уставки котла	15150 ºC	65 ⁰C	
		Тпад	Скорость падения темп. котла. Определяет момент включения 2 ст. горелки	1500 ⁰С*мин	25 ⁰С*мин	
		Трост	Скорость роста темп. котла. Определяет момент выключения 2 ст. горелки	1500 ⁰С*мин	25 ⁰С*мин	
тла		t1	Время выбега горелки на 1ст. Исключает частый запуск	010 мин.	2 мин.	
аметры ко		t2	Время выбега котлового насоса НК ведомого котла.	060 мин.	5 мин.	
		tk1	Время открытия привода трехходового клапана.	0600 сек.	120 сек.	
Пар		t3	Время открытия привода газового дросселя горелки.	10240 сек.	65 сек.	
		ТКР	Уставка рабочей температуры котла	60155 °C	85 °C	
		dTKP	Гистерезис. Определяет рабочее темп. поле	010 °C	2 °C	
		TKO/TSO*	Уставка темп. обратного потока котла (функция защиты)	5080 °C	60 ºC	
		Внешн. запрос	Работа котла по внешнему запросу	ДА - НЕТ	HET	
	Темп. котла	Нижний предел	Нижнее значение предела по паспорту	-100500 °C	0°C	
	ТКР	Верхний предел	Верхнее значение предела по паспорту	-100500 °C	200 °C	
	Темп. обратки	Нижний предел	Нижнее значение предела по паспорту	-100500 °C	0°0	
	котла ТКО	Верхний предел	Верхнее значение предела по паспорту	-100500 °C	200 °C	
	Темп. ТР1	Нижний предел	Нижнее значение предела по паспорту	-100500 °C	0°C	
	(OK1)	Верхний предел	Верхнее значение предела по паспорту	-100500 °C	200 °C	
Чика	Темп. ТР2	Нижний предел	Нижнее значение предела по паспорту	-100500 °C	0°C	
датч	(OK2)	Верхний предел	Верхнее значение предела по паспорту	-100500 °C	200 °C	
зон	Темп. ТРЗ/	Нижний предел	Нижнее значение предела по паспорту	-100500 °C	0°C	
апа:	TW3 (OK3/FBC)	Верхний предел	Верхнее значение предела по паспорту	-100500 °C	200 °C	
đ	Темп. ТР4/	Нижний предел	Нижнее значение предела по паспорту	-100500 °C	0 °C	
	TW4 (OK4/FBC)	Верхний предел	Верхнее значение предела по паспорту	-100500 °C	200 °C	
	(OK // DO)	Нижний прелел	Нижнее значение преледа по пасторти	-100 500 °C	0 °C	
	темп. стратегии TSP	Верхний предел		-100 500 °C	200.00	
	T	Нижний предел		-100 500 °C	-50 °C	
	темп. помещения TZ	Верхний предел	Верхнее значение предела по паспорту	-100500 °C	+50 °C	

* При схеме с использованием датчика температуры обратного потока котлового контура вводится параметр TSO.

Продолжение Таблица 14

	Темп	Нижний предел	Нижнее значение предела по паспорту	-100500 °C	-50 °C
	наружная TU	Верхний предел	Верхнее значение предела по паспорту	-100500 °C	+50 °C
	Темп.	Нижний предел	Нижнее значение предела по паспорту	-100500 °C	O° O
	стратегии обратная TSO	Верхний предел	Верхнее значение предела по паспорту	-100500 °C	200 °C
		ТZв	Уставка рабочей температуры вкл. вентилятора	040 °C	25 ⁰C
	CXEMA 1	dTZв	Гистерезис. Определяет рабочее темп. поле вентилятора	010 °C	3 °C
	Вентилятор/ калорифер	TZκ	Уставка рабочей температуры вкл. калорифера	040 °C	15 ⁰C
		dTZκ	Гистерезис. Определяет рабочее темп. поле калорифера	010 °C	3 °C
	CYEMA 2	TZ	Уставка рабочей температуры помещения	040 °C	20 °C
	Две	dTZ	Гистерезис. Определяет рабочее темп. поле	010 ⁰C	5 °C
	вентустановки	ВУ	Выбор ведущей вентустановки	12	1
		TP1max	Ограничение макс. темп. диапазона уставки ОК	20150 °C	110 °C
		TP1min	Ограничение миним. темп. диапазона уставки ОК	20115 °C	55 °C
		TP1	Уставка рабочей температуры ОК	20150 °C	75 ⁰C
		TP1/TU	Включение температурной кривой	ДА - НЕТ	HET
	Отопительный	TP1/-10	Задание температурной кривой, точка 1	0150 °C	85 °C
	контур 1 (ОК1)	TP1/+10	Задание температурной кривой, точка 2	0150 °C	45 °C
		TU off OK1	Значение наруж.темп. для отключения ОК (реж.«Лето»)	060 °C	15 °C
		TSP>TP1	Превышение темп.стратегии над ОК	030 °C	2 °C
		t клап	Время выбега привода трехходового клапана ОК	0600 сек.	120 сек.
		Реж. «Лето»	Автомат. отключение ОК	ДА - НЕТ	HET
		TP2max	Ограничение макс. темп. диапазона уставки ОК	20115 °C	110 °C
		TP2min	Ограничение миним. темп. диапазона уставки ОК	20115 °C	55 °C
		TP2	Уставка рабочей температуры ОК	20115 °C	75 °C
		TP2/TU	Включение температурной кривой	ДА - НЕТ	HET
	Отопительный	TP2/-10	Задание температурной кривой, точка 1	0150 °C	85 ºC
	контур 2 (OK2)	TP2/+10	Задание температурной кривой, точка 2	0150 °C	45 ⁰C
		TU off OK2	Значение наруж.темп. для отключения ОК (реж.«Лето»)	060 °C	15 °C
		TSP > TP2	Превышение темп.стратегии над ОК	030 °C	2 °C
		t клап	Время открытия привода трехходового клапана ОК	0600 сек.	120 сек.
		Реж. «Лето»	Автомат. отключение ОК	ДА - НЕТ	HET
		TP3max	Ограничение макс. темп. диапазона уставки ОК	20115 °C	110 ºC
		TP3min	Ограничение миним. темп. диапазона уставки ОК	20115 °C	55 °C
		TP3	Уставка рабочей температуры ОК	20115 °C	75 °C
		TP3/TU	Включение температурной кривой	ДА - HET	HET
	Отопительный	TP3/-10	Задание температурной кривой, точка 1	0150 °C	85 °C
	(OK3)	TU off OK3	Задание температурнои кривои, точка 2 Значение наруж.темп. для отключения ОК	0150 °C	45 ℃ 15 ℃
		TOD TDO	(pex.«Jiero»)	0.00.00	0.00
		15P > 1P3	Превышение темп.стратегии над ОК	030 °C	2 %
			время открытия привода трехходового клапана ОК		120 Cek.
		TP4may		да - нет 20. 115.ºC	HEI 110.ºC
		TP4min		20115 °C	55 °C
		TP4		20115 °C	75 °C
	Отопительный	TD4/TU			LET
	контур 4	TD4/10	оключение температурной кривой		
	(0,1,1)	TP4/-10	задание температурнои кривои, точка 1	0150 °C	85 °C
		1 P4/+10	Задание температурной кривой, точка 2	0150 °C	45 0
		TU off OK4	оначение наружлеми, для отключения ОК (реж.«Лето»)	060 °C	15 ºC

CPTK

		TSP > TP4	Превышение темп.стратегии над ОК	030 °C	2 °C
		t клап	Время открытия привода трехходового клапана ОК	0600 сек.	120 сек.
		Реж. «Лето»	Автомат. отключение ОК	ДА - НЕТ	HET
		TW4	Уставка рабочей температуры ГВС	080 °C	60 °C
		HZ4	Количество включений насоса рециркуляции в час	06 вкл./час.	0 вкл./час.
	СХЕМА 1 ГВС с 3х-ход	t клап	Время открытия привода трехходового клапана ГВС.	0240 сек.	30 сек.
		TSP > FBC	Превышение темп.стратегии над ГВС	010 °C	2 °C
		TW4	Уставка рабочей температуры ГВС	080 °C	60 °C
0	CXEMA 1	dTW4	Гистерезис. Определяет рабочее темп. поле	010 °C	5 °C
I BO	Зх-ход	HZ4	Количество включений насоса рециркуляции в час	06 вкл./час.	0 вкл./час.
иетрн		TSP > FBC	Превышение темп.стратегии над ГВС	010 °C	2 °C
Параі		TW3	Уставка рабочей температуры ГВС на потребителя	075 °C	60 °C
	CXEMA 2	dTW	Перепад температуры на теплообменнике	010 °C	3 °C
		TWmax	Уставка максим. температуры ГВС на потребителя	080 °C	0° 08
		t клап	Время открытия привода трехходового клапана ГВС.	0240 сек.	120 сек.
		Миним.частота	Минимальная частота оборотов загрузочного насоса HR	050 Гц	0 Гц
		TSP > FBC	Превышение темп.стратегии над ГВС	010 °C	2 °C
аметры стратегии		TSPmax	Ограничение макс. темп. диапазона уставки стратегии	20115 °C	100 °C
		TSPmin	Ограничение миним. темп. диапазона уставки стратегии	20115 °C	0° 00
		Тпад	Скорость падения темп. стратегии. Определяет момент включения ведомого котла	1500 ⁰С*мин	5 ⁰С*мин
		Трост	Скорость роста темп. стратегии. Определяет момент выключения ведомого котла	1500 ⁰С*мин	5 ⁰С*мин
		t_cascad	Время переключения каскада	1500 часов.	100 часов.
		TKP > TSP	Превышение температуры котлов над стратегией	010 °C	O°C
Пар		TSP/TU	Включение температурной кривой	ДА - НЕТ	HET
		TSP/-10	Задание температурной кривой, точка 1	0150 °C	85 °C
		TSP/+10	Задание температурной кривой, точка 2	0150 °C	45 °C
		TSP	Уставка рабочей температуры стратегии	20115 °C	95 °C
		dTSP	Гистерезис. Определяет рабочее темп. поле	010 °C	2 °C

Продолжение Таблица 14

12.3 База данных, передаваемая по протоколу Modbus СУ ЭНТРОМАТИК 100М (Port 2)

Обозначение параметра	О4 Физический ВХОД/ВЫХОД	НАЗНАЧЕНИЕ	Адрес Modbus	Тип данных	Подключение
VOK5_open	O0	Трехходовой клапан ОК5 ОТКР.	8889	BIT	БР котел 2
VOK5_close	O1	Трехходовой клапан ОК5 ЗАКР.	8890	BIT	БР котел 2
HO5_ON	02	Включение насоса OK5	8891	BIT	БР котел 2
VOK6_open	O3	Трехходовой клапан ОК6 ОТКР.	8892	BIT	БР котел 2
VOK6_close	O4	Трехходовой клапан ОК6 ЗАКР.	8893	BIT	БР котел 2
HO6_ON	O5	Включение насоса ОК6	8894	BIT	БР котел 2
VOK7_open	O6	Трехходовой клапан ОК7 ОТКР.	8895	BIT	БР котел 2
VOK7_close	07	Трехходовой клапан ОК7 ЗАКР.	8896	BIT	БР котел 2
HO7_ON	O8	Включение насоса OK7	8897	BIT	БР котел 2
VOK8_open	O9	Трехходовой клапан ОК8 ОТКР.	8898	BIT	БР котел 2
VOK8_close	O10	Трехходовой клапан ОК8 ЗАКР.	8899	BIT	БР котел 2
HO8_ON	O11	Включение насоса ОК8	8900	BIT	БР котел 2
HR8_ON	O12	Включение насоса загрузки ГВС	8901	BIT	БР котел 2
HZ8_ON	O13	Включение насоса рециркуляции ГВС	8902	BIT	БР котел 2
VOK9_open	O0	Трехходовой клапан ОК9 ОТКР.	8905	BIT	БР котел 3
VOK9_close	O1	Трехходовой клапан ОК9 ЗАКР.	8906	BIT	БР котел 3
HO9_ON	02	Включение насоса ОК9	8907	BIT	БР котел 3
VOK10_open	O3	Трехходовой клапан ОК10 ОТКР.	8908	BIT	БР котел 3
VOK10_close	O4	Трехходовой клапан ОК10 ЗАКР.	8909	BIT	БР котел 3
HO10_ON	O5	Включение насоса ОК10	8910	BIT	БР котел 3
VOK11_open	O6	Трехходовой клапан ОК11 ОТКР.	8911	BIT	БР котел 3
VOK11_close	07	Трехходовой клапан ОК11 ЗАКР.	8912	BIT	БР котел 3
HO11_ON	O8	Включение насоса OK11	8913	BIT	БР котел 3
VOK12_open	O9	Трехходовой клапан ОК12 ОТКР.	8914	BIT	БР котел 3
VOK12_close	O10	Трехходовой клапан ОК12 ЗАКР.	8915	BIT	БР котел 3
HO12_ON	O11	Включение насоса OK12	8916	BIT	БР котел 3
HR12_ON	O12	Включение насоса загрузки ГВС	8917	BIT	БР котел 3
HZ12_ON	O13	Включение насоса рециркуляции ГВС	8918	BIT	БР котел 3
VOK13_open	O0	Трехходовой клапан ОК13 ОТКР.	8921	BIT	БР котел 4
VOK13_close	O1	Трехходовой клапан ОК13 ЗАКР.	8921	BIT	БР котел 4
HO13_ON	02	Включение насоса ОК13	8921	BIT	БР котел 4
VOK14_open	O3	Трехходовой клапан ОК14 ОТКР.	8924	BIT	БР котел 4
VOK14_close	O4	Трехходовой клапан ОК14 ЗАКР.	8925	BIT	БР котел 4
HO14_ON	O5	Включение насоса ОК14	8926	BIT	БР котел 4
VOK15_open	O6	Трехходовой клапан ОК15 ОТКР.	8927	BIT	БР котел 4
VOK15_close	07	Трехходовой клапан ОК15 ЗАКР.	8928	BIT	БР котел 4
HO15_ON	O8	Включение насоса OK15	8929	BIT	БР котел 4
VOK16_open	O9	Трехходовой клапан OK16 OTKP.	8930	BIT	БР котел 4
VOK16_close	O10	Трехходовой клапан OK16 ЗАКР.	8931	BIT	БР котел 4
HO16_ON	O11	Включение насоса OK16	8932	BIT	БР котел 4
HR16_ON	O12	Включение насоса загрузки ГВС	8933	BIT	БР котел 4
HZ16_ON	O13	Включение насоса рециркуляции ГВС	8934	BIT	БР котел 4

Таблица 15

•					
VOK17_open	O0	Трехходовой клапан ОК17 ОТКР.	8937	BIT	БР котел 5
VOK17_close	01	Трехходовой клапан ОК17 ЗАКР.	8938	BIT	БР котел 5
HO17_ON	O2	Включение насоса ОК17	8939	BIT	БР котел 5
VOK18_open	O3	Трехходовой клапан ОК18 ОТКР.	8940	BIT	БР котел 5
VOK18_close	O4	Трехходовой клапан ОК18 ЗАКР.	8941	BIT	БР котел 5
HO18_ON	O5	Включение насоса ОК18	8942	BIT	БР котел 5
VOK19_open	O6	Трехходовой клапан ОК19 ОТКР.	8943	BIT	БР котел 5
VOK19_close	07	Трехходовой клапан ОК19 ЗАКР.	8944	BIT	БР котел 5
HO19_ON	O8	Включение насоса ОК19	8945	BIT	БР котел 5
VOK20_open	O9	Трехходовой клапан ОК20 ОТКР.	8946	BIT	БР котел 5
VOK20_close	O10	Трехходовой клапан ОК20 ЗАКР.	8947	BIT	БР котел 5
HO20_ON	O11	Включение насоса OK20	8948	BIT	БР котел 5
HR20_ON	012	Включение насоса загрузки ГВС	8949	BIT	БР котел 5
HZ20_ON	O13	Включение насоса рециркуляции ГВС	8950	BIT	БР котел 5
Alarm_K2	10	Авария котла 2	8953	BIT	контроллер котел 2
Alarm_G2	11	Авария горелки 2	8954	BIT	контроллер котел 2
Work_G2	12	Работа горелки 2	8973	BIT	контроллер котел 2
Alarm_HK2	13	Авария насоса котла 2	8955	BIT	контроллер котел 2
IND1	14	Дискретный вход 1 котла 2	8969	BIT	контроллер котел 2
IND2	15	Дискретный вход 2 котла 2	8970	BIT	контроллер котел 2
IND3	16	Дискретный вход 3 котла 2	8971	BIT	контроллер котел 2
IND4	17	Дискретный вход 4 котла 2	8972	BIT	контроллер котел 2
Work_HK2	18	Работа насоса котла 2	8981	BIT	контроллер котел 2
TKP2_No		Обрыв датчика темп. котла 2	8956	BIT	
TKO2_No		Обрыв датчика темп. обратки котла 2	8957	BIT	
Hot_K2		Перегрев котла 2	8958	BIT	
Cool_K2		Котел 2 холодный	8959	BIT	
I/OExpan_No		Нет связи с блоками расширения (БР)	8961	BIT	
TP5_No		Обрыв датчика темп. ОК5	8962	BIT	
TP6_No		Обрыв датчика темп. ОК6	8963	BIT	
TP7/TW7_No		Обрыв датчика темп. ОК7/ ГВС(схема 2)	8964	BIT	
TP8/TW8_No		Обрыв датчика темп. OK8/ ГВС(схема 1, 2)	8965	BIT	
K2_OFF		Котел 2 ВЫКЛЮЧЕН	8984	BIT	
lst_G2	O0	I ступень горелки 2	8975	BIT	контроллер котел 2
llst_G2_open	O1	II ступени горелки 2 (увеличение мощности)	8976	BIT	контроллер котел 2
llst_G2_close	O2	II ступени горелки 2 (уменьшение мощности)	8977	BIT	контроллер котел 2
VK2_open	O3	Трехходовой клапан котла 2 ОТКР.	8978	BIT	контроллер котел 2
VK2_close	O4	Трехходовой клапан котла 2 ЗАКР.	8979	BIT	контроллер котел 2
HK2_ON	O5	Включение насоса котла 2	8980	BIT	контроллер котел 2
TKP2_PV	AN0	Темп. котла 2	1969	INT	контроллер котел 2
TKO2_PV	AN1	Темп. обратки котла 2	1970	INT	контроллер котел 2
SummTime_G2		Наработка горелки 2	1971	INT	
TP5_PV	AIO	Темп. подачи ОК5	1972	INT	БР котел 2
TP6_PV	Al1	Темп. подачи ОК6	1973	INT	БР котел 2
TP7/TW7_PV	Al2	Темп. подачи ОК7/ГВС подача (схема 2)	1974	INT	БР котел 2
TP8/TW8_PV	AI3	Темп. подачи ОК8/ГВС подача (схема 1)	1975	INT	БР котел 2
HR8_OUT	AO0, AO1	Управляющий выход частотником. ГВС (схема 2)	1978	INT	БР котел 2

Продолжение Таблица 15

Продолжение Таблица 15

TKP2_SP		Текущая уставка котла 2	1979	INT	
TKO2_SP		Текущая уставка обратки котла 2	1980	INT	
Alarm_K3	10	Авария котла 3	8985	BIT	контроллер котел 3
Alarm_G3	11	Авария горелки 3	8986	BIT	контроллер котел 3
Work_G3	12	Работа горелки 3	9005	BIT	контроллер котел 3
Alarm_HK3	13	Авария насоса котла 3	8987	BIT	контроллер котел 3
IND1	14	Дискретный вход 1 котла 3	9001	BIT	контроллер котел 3
IND2	15	Дискретный вход 2 котла 3	9002	BIT	контроллер котел 3
IND3	16	Дискретный вход 3 котла 3	9003	BIT	контроллер котел 3
IND4	17	Дискретный вход 4 котла 3	9004	BIT	контроллер котел 3
Work_HK3	18	Работа насоса котла 3	9013	BIT	контроллер котел 3
TKP3_No		Обрыв датчика темп. котла 3	8988	BIT	
TKO3_No		Обрыв датчика темп. обратки котла 3	8989	BIT	
Hot K3		Перегрев котла 3	8990	BIT	
Cool K3		Котел 3 холодный	8991	BIT	
I/OExpan No		Нет связи с блоками расширения (БР)	8993	BIT	
			8994	BIT	
TR10 No			8005	BIT	
			8995	DIT	
			8990		
1P12/1W12_No		Сорыв датчика темп. ОКТ2/ ТВС(схема 1, 2)	8997	BIT	
K3_OFF		Котел З ВЫКЛЮЧЕН	9016	BII	
Ist_G3	00	I ступень горелки 3	9007	BIT	контроллер котел 3
llst_G3_open	01	II ступени горелки 3 (увеличение мощности)	9008	BIT	контроллер котел 3
llst_G3_close	02	II ступени горелки 3 (уменьшение мощности)	9009	BIT	контроллер котел 3
VK3_open	O3	Трехходовой клапан котла 3 ОТКР.	9010	BIT	контроллер котел 3
VK3_close	O4	Трехходовой клапан котла 3 ЗАКР.	9010	BIT	контроллер котел 3
HK3_ON	O5	Включение насоса котла 3	9012	BIT	контроллер котел 3
TKP3_PV	AN0	Темп. котла 3	1985	INT	контроллер котел 3
TKO3_PV	AN1	Темп. обратки котла 3	1986	INT	контроллер котел 3
SummTime_G3		Наработка горелки 3	1987	INT	
TP9_PV	AIO	Темп. подачи ОК9	1988	INT	БР котел 3
TP10_PV	Al1	Темп. подачи ОК10	1989	INT	БР котел 3
TP11/TW11_PV	Al2	Темп. подачи ОК11/ГВС подача (схема 2)	1990	INT	БР котел 3
TP12/TW12_PV	AI3	Темп. подачи ОК12/ГВС подача (схема 1)	1991	INT	БР котел 3
HR12_OUT	AO0, AO1	Управляющий выход частотником. ГВС (схема 2)	1994	INT	БР котел 3
TKP3_SP		Текущая уставка котла 3	1995	INT	
TKO3_SP		Текущая уставка обратки котла 3	1996	INT	
Alarm K4	10	Авария котла 4	9017	BIT	контроллер котел 4
Alarm G4	11	Авария горелки 4	9018	BIT	контроллер котел 4
Work G4	12	Работа горелки 4	9037	BIT	контроллер котел 4
Alarm HK4	13	Авария насоса котла 4	9019	BIT	контроллер котел 4
IND1	14	Лискретный вход 1 котла 4	9033	BIT	контроллер котел 4
	15	Пискретный вход 2 котда 4	9034	BIT	контроллер котел 4
IND3	16	Пискретный вход 3 котла 4	9035	BIT	
	17		9036	BIT	
	18		9045	BIT	
	10		0020	DIT	коптроллер котел 4
			9020	DIT	
1K04_N0		Оорыв датчика темп. ооратки котла 4	9021	DII	

продолжение таолица	Продолжение	Таблица	15
---------------------	-------------	---------	----

Hot_K4		Перегрев котла 4	9022	BIT	
Cool_K4		Котел 4 холодный	9023	BIT	
l/OExpan_No		Нет связи с блоками расширения (БР)	9025	BIT	
TP13_No		Обрыв датчика темп. ОК13	9026	BIT	
TP14_No		Обрыв датчика темп. ОК14	9027	BIT	
TP15/TW15_No		Обрыв датчика темп. OK15/ ГВС(схема 2)	9028	BIT	
TP16/TW16_No		Обрыв датчика темп. ОК16/ ГВС(схема 1, 2)	9029	BIT	
K4_OFF		Котел 4 ВЫКЛЮЧЕН	9048	BIT	
lst_G4	00	I ступень горелки 4	9039	BIT	контроллер котел 4
2st_G4_open	01	II ступени горелки 4 (увеличение мощности)	9040	BIT	контроллер котел 4
2st_G4_close	02	II ступени горелки 4 (уменьшение мощности)	9041	BIT	контроллер котел 4
VK4_open	O3	Трехходовой клапан котла 4 ОТКР.	9042	BIT	контроллер котел 4
VK4_close	O4	Трехходовой клапан котла 4 ЗАКР.	9043	BIT	контроллер котел 4
HK4_ON	O5	Включение насоса котла 4	9044	BIT	контроллер котел 4
TKP4_PV	AN0	Темп. котла 4	2001	INT	контроллер котел 4
TKO4_PV	AN1	Темп. обратки котла 4	2002	INT	контроллер котел 4
SummTime_G4		Наработка горелки 4	2003	INT	
TP13_PV	AIO	Темп. подачи ОК13	2004	INT	БР котел 4
TP14_PV	Al1	Темп. подачи ОК14	2005	INT	БР котел 4
TP15/TW15_PV	Al2	Темп. подачи OK15/ГВС подача (схема 2)	2006	INT	БР котел 4
TP16/TW16_PV	AI3	Темп. подачи ОК15/ГВС подача (схема 1)	2007	INT	БР котел 4
HR16_OUT	AO0, AO1	Управляющий выход частотником. ГВС (схема 2)	2010	INT	БР котел 4
TKP4_SP		Текущая уставка котла 4	2011	INT	
TKO4_SP		Текущая уставка обратки котла 4	2012	INT	
Alarm_K5	10	Авария котла 5	9049	BIT	контроллер котел 5
Alarm_G5	11	Авария горелки 5	9050	BIT	контроллер котел 5
Work_G5	12	Работа горелки 5	9069	BIT	контроллер котел 5
Alarm_HK5	13	Авария насоса котла 5	9051	BIT	контроллер котел 5
IND1	14	Дискретный вход 1 котла 5	9065	BIT	контроллер котел 5
IND2	15	Дискретный вход 2 котла 5	9066	BIT	контроллер котел 5
IND3	16	Дискретный вход 3 котла 5	9067	BIT	контроллер котел 5
IND4	17	Дискретный вход 4 котла 5	9068	BIT	контроллер котел 5
Work_HK5	18	Работа насоса котла 5	9077	BIT	контроллер котел 5
TKP5_No		Обрыв датчика темп. котла 5	9052	BIT	
TKO5_No		Обрыв датчика темп. обратки котла 5	9052	BIT	
Hot_K5		Перегрев котла 5	9054	BIT	
Cool_K5		Котел 5 холодный	9055	BIT	
l/OExpan_No		Нет связи с блоками расширения (БР)	9057	BIT	
TP17_No		Обрыв датчика темп. ОК17	9058	BIT	
TP18_No		Обрыв датчика темп. ОК18	9059	BIT	
TP19/TW19_No		Обрыв датчика темп. ОК19/ГВС (схема 2)	9060	BIT	
TP20/TW20_No		Обрыв датчика темп. ОК20/ГВС (схема 1, 2)	9061	BIT	
K5_OFF		Котел 5 ВЫКЛЮЧЕН	9080	BIT	
lst_G5	00	I ступень горелки 5	9071	BIT	контроллер котел 5
2st_G5_open	O1	II ступени горелки 5 (увеличение мощности)	9072	BIT	контроллер котел 5
2st_G5_close	02	II ступени горелки 5 (уменьшение мощности)	9073	BIT	контроллер котел 5
VK5_open	O3	Трехходовой клапан котла 5 ОТКР.	9074	BIT	контроллер котел 5
VK5_close	04	Трехходовой клапан котла 5 ЗАКР.	9075	BIT	контроллер котел 5
--------------	----------------	--	------	------	--------------------
HK5_ON	O5	Включение насоса котла 5	9076	BIT	контроллер котел 5
TKP5_PV	AN0	Темп. котла 5	2017	INT	контроллер котел 5
TKO5_PV	AN1	Темп. обратки котла 5	2018	INT	контроллер котел 5
SummTime_G5		Наработка горелки 5	2019	INT	
TP17_PV	Alo	Темп. подачи ОК17	2020	INT	БР котел 5
TP18_PV	Al1	Темп. подачи ОК18	2021	INT	БР котел 5
TP19/TW19_PV	AI2	Темп. подачи ОК19/ГВС подача (схема 2)	2022	INT	БР котел 5
TP20/TW20_PV	AI3	Темп. подачи ОК20/ГВС подача (схема 1)	2023	INT	БР котел 5
HR20_OUT	AO0, AO1	Управляющий выход частотником. ГВС (схема 2)	2026	INT	БР котел 5
TKP5_SP		Текущая уставка котла 5	2027	INT	
TKO5_SP		Текущая уставка обратки котла 5	2028	INT	
Al1	AN0 (модуль 1)	Аналоговый вход 1	610	INT	Диспетч. блок DBAI
AI2	AN1 (модуль 1)	Аналоговый вход 2	611	INT	Диспетч. блок DBAI
AI3	AN2 (модуль 1)	Аналоговый вход 3	612	INT	Диспетч. блок DBAI
Al4	AN3 (модуль 1)	Аналоговый вход 4	613	INT	Диспетч. блок DBAI
AI5	AN4 (модуль 1)	Аналоговый вход 5	614	INT	Диспетч. блок DBAI
AIG	AN5 (молуль 1)	Анапоговый вход 6	615	INT	Лиспетч, блок DBAI
AIZ	AN6 (модуль 1)	Аналоговый вход С	616	INT	Диспетч. блок DBAI
A18			617	INT	
			618		
			610		
AI10	AN1 (модуль 2)		620		
	AN2 (модуль 2)		620		
AI12	AN3 (модуль 2)		621		
AIT3	АН4 (МОДУЛЬ 2)	Аналоговыи вход 13	622		диспетч. блок DBAI
AI14	AN5 (модуль 2)	Аналоговыи вход 14	623		Диспетч. блок DBAI
AI15	АНБ (МОДУЛЬ 2)	Аналоговыи вход 15	624		Диспетч. блок DBAI
Al16	AN7 (модуль 2)	Аналоговыи вход 16	625	INI	Диспетч. блок DBAI
AI17	АЮО (МОДУЛЬ З)	Аналоговыи вход 17	626	IN I	Диспетч. блок DBAI
Al18	AN1 (модуль 3)	Аналоговый вход 18	627	INT	Диспетч. блок DBAI
Al19	AN2 (модуль 3)	Аналоговый вход 19	628	INT	Диспетч. блок DBAI
AI20	AN3 (модуль 3)	Аналоговый вход 20	629	INT	Диспетч. блок DBAI
Al21	AN4 (модуль 3)	Аналоговый вход 21	630	INT	Диспетч. блок DBAI
AI22	AN5 (модуль 3)	Аналоговый вход 22	631	INT	Диспетч. блок DBAI
AI23	AN6 (модуль 3)	Аналоговый вход 23	632	INT	Диспетч. блок DBAI
Al24	AN7 (модуль 3)	Аналоговый вход 24	633	INT	Диспетч. блок DBAI
AI25	AN0 (модуль 4)	Аналоговый вход 25	634	INT	Диспетч. блок DBAI
AI26	AN1 (модуль 4)	Аналоговый вход 26	635	INT	Диспетч. блок DBAI
AI27	AN1 (модуль 4)	Аналоговый вход 27	636	INT	Диспетч. блок DBAI
AI28	AN3 (модуль 4)	Аналоговый вход 28	637	INT	Диспетч. блок DBAI
AI29	AN4 (модуль 4)	Аналоговый вход 29	638	INT	Диспетч. блок DBAI
AI30	AN5 (модуль 4)	Аналоговый вход 30	639	INT	Диспетч. блок DBAI
Al31	AN6 (модуль 4)	Аналоговый вход 31	640	INT	Диспетч. блок DBAI
AI32	AN7 (модуль 4)	Аналоговый вход 32	641	INT	Диспетч. блок DBAI
DI1	10 (Модуль 1)	Дискретный вход 1	701	BIT	Диспетч. блок DBAI
DI2	I1 (Модуль 1)	Дискретный вход 2	702	BIT	Диспетч. блок DBAI
DI3	I2 (Модуль 1)	Дискретный вход 3	703	BIT	Диспетч. блок DBAI
DI4	I3 (Модуль 1)	Дискретный вход 4	704	BIT	Диспетч. блок DBAI

DI5 I4 (Модуль 1) Дискретный вход 5 705 BIT Диспетч. блок DBAI DI6 I5 (Модуль 1) Дискретный вход 6 706 BIT Диспетч. блок DBAI DI7 I6 (Модуль 1) Дискретный вход 7 707 BIT Диспетч. блок DBAI DI8 I7 (Модуль 1) 708 BIT Диспетч. блок DBAI Дискретный вход 8 DI9 BIT 18 (Модуль 1) Дискретный вход 9 709 Диспетч, блок DBAI BIT Диспетч. блок DBAI DI10 710 I9 (Модуль 1) Дискретный вход 10 DI11 I10 (Модуль 1) Дискретный вход 11 711 BIT Диспетч. блок DBAI DI12 I11 (Модуль 1) Дискретный вход 12 712 BIT Диспетч. блок DBAI DI13 I12 (Модуль 1) Дискретный вход 13 713 BIT Диспетч. блок DBAI DI14 I13 (Модуль 1) Дискретный вход 14 714 BIT Диспетч. блок DBAI DI15 715 BIT I14 (Модуль 1) Дискретный вход 15 Диспетч. блок DBAI DI16 716 BIT I15 (Модуль 1) Диспетч. блок DBAI Дискретный вход 16 DI17 717 BIT Диспетч. блок DBAI 10 (Модуль 2) Дискретный вход 17 DI18 BIT I1 (Модуль 2) Дискретный вход 18 718 Диспетч. блок DBAI DI19 I2 (Модуль 2) Дискретный вход 19 719 BIT Диспетч. блок DBAI DI20 I3 (Модуль 2) Дискретный вход 20 720 BIT Диспетч. блок DBAI DI21 721 BIT I4 (Модуль 2) Дискретный вход 21 Диспетч. блок DBAI DI22 I5 (Модуль 2) Дискретный вход 22 722 BIT Диспетч. блок DBAI DI23 BIT I6 (Модуль 2) Дискретный вход 23 723 Диспетч. блок DBAI DI24 BIT I7 (Модуль 2) Дискретный вход 24 724 Лиспетч блок DBAI DI25 18 (Модуль 2) Дискретный вход 25 725 BIT Диспетч. блок DBAI DI26 I9 (Модуль 2) Дискретный вход 26 726 BIT Диспетч. блок DBAI DI27 I10 (Модуль 2) Дискретный вход 27 727 BIT Диспетч. блок DBAI BIT DI28 I11 (Модуль 2) Дискретный вход 28 728 Диспетч. блок DBAI DI29 I12 (Модуль 2) Дискретный вход 29 729 BIT Диспетч. блок DBAI DI30 I13 (Модуль 2) BIT 730 Диспетч, блок DBAI Лискретный вход 30 DI31 BIT Диспетч, блок DBAI I14 (Модуль 2) Дискретный вход 31 731 DI32 BIT I15 (Модуль 2) Дискретный вход 32 732 Диспетч. блок DBAI DI33 IO (Модуль З) Дискретный вход 33 733 BIT Диспетч. блок DBAI DI34 I1 (Модуль 3) Дискретный вход 34 734 BIT Диспетч. блок DBAI DI35 BIT I2 (Модуль 3) Дискретный вход 35 735 Диспетч. блок DBAI DI36 I3 (Модуль 3) 736 BIT Диспетч. блок DBAI Дискретный вход 36 DI37 737 BIT I4 (Модуль 3) Дискретный вход 37 Диспетч. блок DBAI DI38 738 BIT Диспетч. блок DBAI I5 (Модуль 3) Дискретный вход 38 DI39 BIT I6 (Модуль 3) Дискретный вход 39 739 Диспетч, блок DBAI DI40 I7 (Модуль З) Дискретный вход 40 740 BIT Диспетч. блок DBAI DI41 18 (Модуль 3) Дискретный вход 41 741 BIT Диспетч. блок DBAI DI42 742 BIT Диспетч. блок DBAI I9 (Модуль 3) Дискретный вход 42 DI43 I10 (Модуль 3) Дискретный вход 43 743 BIT Диспетч. блок DBAI DI44 I11 (Модуль 3) Дискретный вход 44 744 BIT Диспетч. блок DBAI DI45 Дискретный вход 45 745 BIT Диспетч. блок DBAI I12 (Модуль 3) DI46 I13 (Модуль 3) 746 BIT Диспетч. блок DBAI Дискретный вход 46 DI47 I14 (Модуль 3) Дискретный вход 47 747 BIT Диспетч. блок DBAI DI48 I15 (Модуль 3) Дискретный вход 48 748 BIT Диспетч. блок DBAI DI49 BIT Диспетч. блок DBAI IO (Модуль 4) Дискретный вход 49 749 DI50 I1 (Модуль 4) Дискретный вход 50 750 BIT Диспетч. блок DBAI DI51 751 BIT I2 (Модуль 4) Дискретный вход 51 Диспетч. блок DBAI DI52 752 BIT Диспетч, блок DBAI IЗ (Модуль 4) Дискретный вход 52

DI53	I4 (Модуль 4)	Дискретный вход 53	753	BIT	Диспетч. блок DBAI
DI54	I5 (Модуль 4)	Дискретный вход 54	754	BIT	Диспетч. блок DBAI
DI55	I6 (Модуль 4)	Дискретный вход 55	755	BIT	Диспетч. блок DBAI
DI56	I7 (Модуль 4)	Дискретный вход 56	756	BIT	Диспетч. блок DBAI
DI57	I8 (Модуль 4)	Дискретный вход 57	757	BIT	Диспетч. блок DBAI
DI58	I9 (Модуль 4)	Дискретный вход 58	758	BIT	Диспетч. блок DBAI
DI59	I10 (Модуль 4)	Дискретный вход 59	759	BIT	Диспетч. блок DBAI
DI60	I11 (Модуль 4)	Дискретный вход 60	760	BIT	Диспетч. блок DBAI
DI61	I12 (Модуль 4)	Дискретный вход 61	761	BIT	Диспетч. блок DBAI
DI62	I13 (Модуль 4)	Дискретный вход 62	762	BIT	Диспетч. блок DBAI
DI63	I14 (Модуль 4)	Дискретный вход 63	763	BIT	Диспетч. блок DBAI
DI64	I15 (Модуль 4)	Лискретный вход 64	764	BIT	Диспетч, блок DBAI
DI65	10 (Молуль 5)	Лискретный вход 65	765	BIT	Лиспетч блок DBAI
D166	II (Модуль 5)	Пискретный вход 66	766	BIT	Диспетч блок DBAI
DI67	12 (Модуль 5)	Дискретный вход 67	767	BIT	Диспети блок DBAI
DIG	12 (Mogyne 5)		769	BIT	Диспетн. блок ВВА
DI69	13 (Модуль 5)		760	BIT	Duchery, Grok DBAI
D109	14 (Модуль 5)		709	DIT	
DI70	15 (Модуль 5)	дискретный вход 70	770	DIT	
	ю (модуль 5)	дискретный вход 71	771	BIT	диспетч. олок ДВАІ
DI72	17 (Модуль 5)	дискретный вход 72	772	BIT	Диспетч. олок DBAI
DI73	18 (Модуль 5)	Дискретныи вход /3	//3	BH	Диспетч. блок DBAI
DI74	I9 (Модуль 5)	Дискретный вход 74	774	BIT	Диспетч. блок DBAI
DI75	I10 (Модуль 5)	Дискретный вход 75	775	BIT	Диспетч. блок DBAI
DI76	I11 (Модуль 5)	Дискретный вход 76	776	BIT	Диспетч. блок DBAI
DI77	I12 (Модуль 5)	Дискретный вход 77	777	BIT	Диспетч. блок DBAI
DI78	I13 (Модуль 5)	Дискретный вход 78	778	BIT	Диспетч. блок DBAI
DI79	I14 (Модуль 5)	Дискретный вход 79	779	BIT	Диспетч. блок DBAI
DI80	I15 (Модуль 5)	Дискретный вход 80	780	BIT	Диспетч. блок DBAI
DI81	I0 (Модуль 6)	Дискретный вход 81	781	BIT	Диспетч. блок DBAI
DI82	I1 (Модуль 6)	Дискретный вход 82	782	BIT	Диспетч. блок DBAI
DI83	I2 (Модуль 6)	Дискретный вход 83	783	BIT	Диспетч. блок DBAI
DI84	I3 (Модуль 6)	Дискретный вход 84	784	BIT	Диспетч. блок DBAI
DI85	I4 (Модуль 6)	Дискретный вход 85	785	BIT	Диспетч. блок DBAI
DI86	I5 (Модуль 6)	Дискретный вход 86	786	BIT	Диспетч. блок DBAI
DI87	I6 (Модуль 6)	Дискретный вход 87	787	BIT	Диспетч. блок DBAI
DI88	I7 (Модуль 6)	Дискретный вход 88	788	BIT	Диспетч. блок DBAI
DI89	I8 (Модуль 6)	Дискретный вход 89	789	BIT	Диспетч. блок DBAI
DI90	I9 (Модуль 6)	Дискретный вход 90	790	BIT	Диспетч. блок DBAI
DI91	I10 (Модуль 6)	Дискретный вход 91	791	BIT	Диспетч. блок DBAI
DI92	I11 (Модуль 6)	Дискретный вход 92	792	BIT	Диспетч. блок DBAI
DI93	I12 (Модуль 6)	Дискретный вход 93	793	BIT	Диспетч. блок DBAI
DI94	I13 (Модуль 6)	Дискретный вход 94	794	BIT	Диспетч. блок DBAI
DI95	I14 (Модуль 6)	Дискретный вход 95	795	BIT	Диспетч. блок DBAI
DI96	I15 (Модуль 6)	Дискретный вход 96	796	BIT	Диспетч. блок DBAI
DI97	10 (Модуль 7)	Дискретный вход 97	797	BIT	Диспетч. блок DBAI
DI98	I1 (Модуль 7)	Дискретный вход 98	798	BIT	Диспетч. блок DBAI
DI99	I2 (Модуль 7)	Дискретный вход 99	799	BIT	Диспетч. блок DBAI
DI100	I3 (Модуль 7)	Дискретный вход 100	800	BIT	Диспетч, блок DBAI

DI101	I4 (Модуль 7)	Дискретный вход 101	801	BIT	Диспетч. блок DBAI
DI102	I5 (Модуль 7)	Дискретный вход 102	802	BIT	Диспетч. блок DBAI
DI103	I6 (Модуль 7)	Дискретный вход 103	803	BIT	Диспетч. блок DBAI
DI104	I7 (Модуль 7)	Дискретный вход 104	804	BIT	Диспетч. блок DBAI
DI105	I8 (Модуль 7)	Дискретный вход 105	805	BIT	Диспетч. блок DBAI
DI106	19 (Модуль 7)	Дискретный вход 106	806	BIT	Диспетч. блок DBAI
DI107	I10 (Модуль 7)	Дискретный вход 107	807	BIT	Диспетч. блок DBAI
DI108	I11 (Модуль 7)	Дискретный вход 108	808	BIT	Диспетч. блок DBAI
DI109	I12 (Модуль 7)	Дискретный вход 109	809	BIT	Диспетч. блок DBAI
DI110	I13 (Модуль 7)	Дискретный вход 110	810	BIT	Диспетч. блок DBAI
DI111	I14 (Модуль 7)	Дискретный вход 111	811	BIT	Диспетч. блок DBAI
DI112	I15 (Модуль 7)	Дискретный вход 112	812	BIT	Диспетч. блок DBAI
DI113	I0 (Модуль 8)	Дискретный вход 113	813	BIT	Диспетч. блок DBAI
DI114	I1 (Модуль 8)	Дискретный вход 114	814	BIT	Диспетч. блок DBAI
DI115	I2 (Модуль 8)	Дискретный вход 115	815	BIT	Диспетч. блок DBAI
DI116	IЗ (Модуль 8)	Дискретный вход 116	816	BIT	Диспетч. блок DBAI
DI117	I4 (Модуль 8)	Дискретный вход 117	817	BIT	Диспетч. блок DBAI
DI118	I5 (Модуль 8)	Дискретный вход 118	818	BIT	Диспетч. блок DBAI
DI119	I6 (Модуль 8)	Дискретный вход 119	819	BIT	Диспетч. блок DBAI
DI120	I7 (Модуль 8)	Дискретный вход 120	820	BIT	Диспетч. блок DBAI
DI121	I8 (Модуль 8)	Дискретный вход 121	821	BIT	Диспетч. блок DBAI
DI122	I9 (Модуль 8)	Дискретный вход 122	822	BIT	Диспетч. блок DBAI
DI123	I10 (Модуль 8)	Дискретный вход 123	823	BIT	Диспетч. блок DBAI
DI124	I11 (Модуль 8)	Дискретный вход 124	824	BIT	Диспетч. блок DBAI
DI125	I12 (Модуль 8)	Дискретный вход 125	825	BIT	Диспетч. блок DBAI
DI126	I13 (Модуль 8)	Дискретный вход 126	826	BIT	Диспетч. блок DBAI
DI127	I14 (Модуль 8)	Дискретный вход 127	827	BIT	Диспетч. блок DBAI
DI128	I15 (Модуль 8)	Дискретный вход 128	828	BIT	Диспетч. блок DBAI
Alarm_K1	10	Авария котла 1	81	BIT	контроллер котел 1
Alarm_G1	11	Авария горелки 1	82	BIT	контроллер котел 1
Work_G1	12	Работа горелки 1	5	BIT	контроллер котел 1
Alarm_HK1	13	Авария насоса котла 1	83	BIT	контроллер котел 1
Work_HK5	14	Работа насоса котла 1	7	BIT	контроллер котел 1
TKP1_No		Обрыв датчика темп. котла 1	84	BIT	
TKO1_No		Обрыв датчика темп. обратки котла 1	85	BIT	
Hot_K1		Перегрев котла 1	86	BIT	
Cool_K1		Котел 1 холодный	87	BIT	
CANbus_No		Нет сети CANbus	88	BIT	
I/OExpan_No		Нет связи с блоками расширения (БР)	89	BIT	
TP1_No		Обрыв датчика темп. ОК1	90	BIT	
TP2_No		Обрыв датчика темп. ОК2	91	BIT	
TP3/TW3_No		Обрыв датчика темп. ОКЗ/ГВС (схема 2)	92	BIT	
TP4/TW4_No		Обрыв датчика темп. ОК4/ГВС (схема 1, 2)	93	BIT	
CANbus_K2_No		Нет сети CANbus с котлом 2	94	BIT	
CANbus_K3_No		Нет сети CANbus с котлом 3	95	BIT	
CANbus_K4_No		Нет сети CANbus с котлом 4	96	BIT	
CANbus K5 No		Нет сети CANbus с котлом 5	97	BIT	

TU_No		Обрыв датчика наружной темп.	102	BIT	
TSP_No		Обрыв датчика темп. подачи стратегии	103	BIT	
TZ_No		Обрыв датчика темп. помещения	104	BIT	
TSO_No		Обрыв датчика темп. обратки стратегии	105	BIT	
DB_No		Диспетчерский блок не подключен	204	BIT	
Rec_K1		Запрос котла 1	217	BIT	
Rec_K2		Запрос котла 2	1001	BIT	
Rec_K3		Запрос котла З	1017	BIT	
Rec_K4		Запрос котла 4	1033	BIT	
Rec_K5		Запрос котла 5	1049	BIT	
K1_OFF		Котел 5 ВЫКЛЮЧЕН	16	BIT	
lst_G1	O0	I ступень горелки 1	5001	BIT	контроллер котел 1
2st_G1_open	O1	II ступени горелки 1 (увеличение мощности)	5002	BIT	контроллер котел 1
2st_G1_close	02	II ступени горелки 1 (уменьшение мощности)	5003	BIT	контроллер котел 1
VK1_open	O3	Трехходовой клапан котла 1 ОТКР.	5004	BIT	контроллер котел 1
VK1_close	O4	Трехходовой клапан котла 1 ЗАКР.	5005	BIT	контроллер котел 1
HK1_ON	O5	Включение насоса котла 1	5006	BIT	контроллер котел 1
TKP1_PV	AN0	Темп. котла 1	1937	BIT	контроллер котел 1
TKO1_PV	AN1	Темп. обратки котла 1	1938	INT	контроллер котел 1
SummTime_G1		Наработка горелки 1	1939	INT	
TP1_PV	AIO	Темп. подачи ОК1	1940	INT	БР котел 1
TP2_PV	Al1	Темп. подачи ОК2	1941	INT	БР котел 1
TP3/TW3_PV	AI2	Темп. подачи ОКЗ/ГВС подача (схема 2)	1942	INT	БР котел 1
TP4/TW4_PV	AI3	Темп. подачи ОК4/ГВС подача (схема 1)	1943	INT	БР котел 1
HR4_OUT	AO0, AO1	Управляющий выход частотником. ГВС (схема 2)	483	INT	БР котел 1
TKP1_SP		Текущая уставка котла 1	148	INT	
TKO1_SP		Текущая уставка обратки котла 1	30	INT	
TU_PV	AN3	Наружная температура	2034	INT	БР котел 1
TSO_PV	AN5	Темп. обратки стратегии	2035	INT	БР котел 1
TZ_PV	AN4	Темп. помещения	2036	INT	БР котел 1
TSP_PV	AN2	Темп. подачи стратегии	2041	INT	БР котел 1
VOK1_open	O0	Трехходовой клапан ОК1 ОТКР.	5049	BIT	БР котел 1
VOK1_close	O1	Трехходовой клапан ОК1 ЗАКР.	5050	BIT	БР котел 1
HO1_ON	O2	Включение насоса ОК1	5051	BIT	БР котел 1
VOK2_open	O3	Трехходовой клапан OK2 OTKP.	5052	BIT	БР котел 1
VOK2_close	O4	Трехходовой клапан ОК2 ЗАКР.	5053	BIT	БР котел 1
HO2_ON	O5	Включение насоса ОК2	5054	BIT	БР котел 1
VOK3_open	O6	Трехходовой клапан ОКЗ ОТКР.	5055	BIT	БР котел 1
VOK3_close	07	Трехходовой клапан ОКЗ ЗАКР.	5056	BIT	БР котел 1
HO3_ON	O8	Включение насоса ОКЗ	5057	BIT	БР котел 1
VOK4_open	O9	Трехходовой клапан ОК4 ОТКР.	5058	BIT	БР котел 1
VOK4_close	O10	Трехходовой клапан ОК4 ЗАКР.	5059	BIT	БР котел 1
HO4_ON	011	Включение насоса ОК4	5060	BIT	БР котел 1
HR4_ON	012	Включение насоса загрузки ГВС	5061	BIT	БР котел 1
HZ4_ON	O13	Включение насоса рециркуляции ГВС	5062	BIT	БР котел 1
Vent/BY1_ON	014	Включение вентилятора/вентустановка 1	5063	BIT	БР котел 1
Kalor/BY2_ON	015	Включение калорифера/вентустановка 2	5064	BIT	БР котел 1

12.4 Настройка порта COM2 контроллера, задание IDадреса в сети Modbus

RS232

RS485

СХЕМА	№ штырька	RS485: Функция
	1	Сигнал А (+)
	2	(сигнал RS232)
Штырек № 1	3	(сигнал RS232)
	4	(сигнал RS232)
	5	(сигнал RS232)
	6	Сигнал В (-)

RS485 Настройки конечной схемы

Настройки перемычки, показанные в Таблице ниже, определяют, будет ли Энтроматик 110М функционировать как конечное устройство в

RS232/RS485 НАСТРОЙКА ПЕРЕМЫЧКИ СОМ2				
Использовать как:	JP5	JP6		
RS232*	А	А		
RS485	В	В		

сети RS485. Обратите внимание, что настройки выставлены по умолчанию на заводе как «вкл.».

RS485 НАСТРОЙКА ВЫХОДА СОМ2				
Termination (выход)	JP7	JP8		
ON* (вкл.)	А	А		
ОFF (выкл.)	В	В		

1. Открыть контроллер

2. Снять верхнюю плату

3. Установить перемычки

Для настройки порта 2 Энтроматик 110М, зайдите в меню «Общие данные».

Кнопкой 🕂 выберите необходимый интерфейс и выйдите из меню, нажав кнопку ┥ .

Установите перемычки JP5 и JP6 в нужное положение.

Задайте адрес Энтроматик 110М, подключенного в Вашу сеть Modbus. Для задания адреса Энтроматик 110М зайдите в меню «Общие данные». Введите номер адреса на цифровой клавиатуре (64-255) и нажмите ввод 🖌 . Выйдите из меню, нажав 🗛 .

Вскрытие корпуса контроллера может осуществлять только квалифицированный персонал, прошедший сертификацию в компании «Энтророс». В противном случае повреждения, приведенные в процессе вскрытия корпуса, не являются гарантийным случаем и изделие замене не подлежит.

Экран 82

Экран 83

Экран 84

12.5 Схема подключения ЭНТРОМАТИК 110М

энтророс

12.6 Реализация управления модуляцией горелки сигналом 4...20 мА

Для реализации управления модуляцией горелки в щите Энтроматик 100М необходимо установить блоки расширения. На экране настройки типа горелки установить «модулируемая». Активируется

кнопка перехода на следующий экран. На экране выбора способа управления модуляции кнопкой 🗸 выберите «СИГНАЛОМ 4...20 мА».

-Ján

_{ghi} 4

wxyz 9

Экран 86

ESC

+/-

₽

5

•0

Экран 85

СХЕМА ПОДКЛЮЧЕНИЯ

12.7 Реализация управления экономайзером котла

Для управления экономайзером котла (см. рис. 51) в Энтроматик 110М задействуется канал управления отопительным контуром 1. Для этого с панели контроллера зайдите в раздел «Параметры ОК» (см. раздел 9.2.7, стр. 34) и задайте функцию управления для ОК1 «ЭКОНОМАЙЗЕР».

8 (800) 200-88-05 Звонки по России бесплатно www.entroros.ru